МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы магистратуры по направлению подготовки 13.04.02 Электроэнергетика и электротехника, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Автоматизация управления электроподвижным составом и автоведение

Направление подготовки: 13.04.02 Электроэнергетика и электротехника

Направленность (профиль): Электрический транспорт

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 5214

Подписал: заведующий кафедрой Пудовиков Олег

Евгеньевич

Дата: 17.05.2024

1. Общие сведения о дисциплине (модуле).

Целью освоения учебной дисциплины «Автоматизация управления электроподвижным составом и автоведение» является:

- формирование у студентов представлений о специфике автоматизации управления электроподвижным составом.

Задачей освоения учебной дисциплины «Автоматизация управления электроподвижным составом и автоведение» является:

- сформировать у обучающихся представление об особенностях различных систем э.п.с. как объекта управления, о целях и задачах систем автоматического ведения поездов.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ПК-4 - Способен проводить экспертизу и разрабатывать проекты узлов и устройств, технологических процессов эксплуатации, технического обслуживания и ремонта тягового подвижного состава.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Уметь:

Выбирать наиболее существенные по значимости факторы для оценки рациональности управления электроповдижным составом

Владеть:

Методами формализации задачи и выбора приоритетных факторов для разработки систем автоматизированных управления

Знать:

Цели применения система автоматического управления и задачи, ставимые перед ними

- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 5 з.е. (180 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
	Всего	Семестр №3
Контактная работа при проведении учебных занятий (всего):	48	48
В том числе:		
Занятия лекционного типа	16	16
Занятия семинарского типа	32	32

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 132 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

№ п/п	Тематика лекционных занятий / краткое содержание	
1	Понятие об автоматическом управлении.	
	Рассматриваемые вопросы:	
	- Этапы управления. Уровни автоматизации процессов.	
	- Кибернетика, как наука, изучающая законы управления. Возникновение кибернетики и ученые,	
	внесшие существенный вклад в ее развитие. Отличие задач теории автоматического управления от	
	задач кибернетики. Четыре этапа автоматического управления, необходимые для решения задачи	
	управление. Понятие алгоритма. Подразделение этапов управления на распорядительные и	
	исполнительный. Отличие понятий механизации и автоматизации. Уровни автоматического	
	управления, как глубина проникновения автоматики в управляемый процесс. Автоматическое	
	связывание, системы автоматического управления, комплексное автоматическое управление. Уровень	
	автоматизации, соответствующий управлению тяговым электропроводом.	
2	Понятие о функциональных схемах и функциональных устройствах. Принципы	
	управления: по возмущению, по отклонению, комбинированный.	

№		
п/п	Тематика лекционных занятий / краткое содержание	
	Функциональные схемы как графическое изображение САУ, иллюстрирующее принцип ее работы. Отличие понятия функционального устройства от физического. Правила построения функциональных схем и выделения отдельных функциональных устройств. Виды функциональных устройств САУ э.п.с. и их назначение. Примеры функциональных устройств в различных САУ. Понятие о принципах управления. Суть принципов управления по возмущению и по отклонению, соответствующие им функциональные схемы. Преимущества и недостатки указанных принципов управления. Комбинированный принцип управления как наиболее универсальный из существующих.	
3	Типовая функциональная схема САУ стабилизации тока и скорости.	
	Рассматриваемые вопросы: - Понятие о системах стабилизации. Задача управления, решаемая данной функциональной схемой, ее основное назначения. Вид функциональной схемы. Входящие в схему функциональные устройства, соответствующие им физические устройства э.п.с. и выполняемые ими функции. Тяговые характеристики, реализуемые данной системой.	
4	Типовая функциональная схема САУ программного управления.	
	Рассматриваемые вопросы: - Понятие о программном управлении. Виды задач, решаемых программными САУ. Задача управления, решаемая данной функциональной схемой, ее основное назначения. Вид функциональной схемы. Входящие в схему функциональные устройства, соответствующие им физические устройства э.п.с. и выполняемые ими функции. Применение рассмотренной системы для реализации ограничений тяговых характеристик.	
5	Функциональная схема многоканальной САУ, учитывающая разброс параметров	
	ТЯГОВЫХ ДВИГАТЕЛЕЙ. Рассматриваемые вопросы: - Понятие о канале управления, различие между одноканальными и многоканальными САУ. Системы автоматизации тягового электропривода как многоканальные системы. Виды каналов управления тяговым двигателем. Задача управления, решаемая данной функциональной схемой, ее основное назначения. Вид функциональной схемы. Входящие в схему функциональные устройства, соответствующие им физические устройства э.п.с. и выполняемые ими функции. Причины, вызывающие разброс фактических значений регулируемых величин и способы компенсации такого разброса.	
6	Функциональная схема многоконтурной САУ подчиненного регулирования. Рассматриваемые вопросы: - Понятие о контуре управления, различие между одноконтурными и многоконтурными САУ. Системы автоматизации тягового электропривода как многоконтурные системы. Многоконтурные системы селективного и подчиненного управления. Задача управления, решаемая данной функциональной схемой, ее основное назначения. Вид функциональной схемы. Входящие в схему функциональные устройства, соответствующие им физические устройства э.п.с. и выполняемые ими функции. Разделение задач управления между внешним и внутренним контурами.	
7	Законы автоматического управления. Типовые регуляторы САУ э.п.с. Понятие об обратной связи и ее виды. Рассматриваемые вопросы: -Функции, выполняемые управляющими устройствами в составе САУ э.п.с. Понятие закона управления. Простейшие законы управления и их реализация типовыми автоматическими регуляторами. Реализация пропорционального, интегрирующего, дифференцирующего, пропорционально-интегрирующего, пропорционально-дифференцирующего и пропорционально-интегро-дифференцирующего регуляторов. Уравнения работы регуляторов. Преимущества и недостатки рассмотренных типовых регуляторов, возможности их применения и основное назначение в составе САУ э.п.с.	
8	Понятие об автоведении. Подсистемы, входящие в систему автоведения. САУ времени хода поезда по перегону.	
	-L	

№ п/п	Тематика лекционных занятий / краткое содержание	
	Рассматриваемые вопросы:	
	- Общие сведения о системах комплексного автоматического управления. Общая структура и	
	принципы построения таких систем. Задачи, решаемые комплексными САУ, реализующими	
	автоведение поезда. Простейшая САУ времени хода по перегону. Функциональная схема такой САУ,	
	входящие в нее контуры и решаемые каждым контуром задачи управления. Системы автоведения,	
	реализующие минимальное время хода, либо минимальные энергозатраты. Концепция построения	
	полной системы, как работающей на принципах компромисса между отдельными критериями.	

4.2. Занятия семинарского типа.

Лабораторные работы

$N_{\underline{0}}$	Наименование лабораторных работ / краткое содержание		
Π/Π			
1	Механическое реле ускорения электропоезда.		
	Изучить назначение и устройство реле ускорения. Изучить функциональную схему его включения и		
	соответствие функциональных и физических устройств, входящих в нее. Ознакомиться с		
	лабораторным стендом для выполнения исследований. Выполнить на стенде опыты по включению и		
	отключению реле при различной силе натяжения регулировочной пружины, различном напряжении		
	цепей управления, а также при встречном и согласном включении катушек. Снять соответствующие		
	значения токов уставки. Построить статические характеристики реле для выполненных опытов,		
	сделать выводы на основе полученных результатов		
2	Электронное реле ускорения электропоезда.		
	Изучить принцип работы электронного реле ускорения и различия функциональных схем		
	электронного и механического реле. Изучить назначение отдельных функциональных блоков,		
	входящих в функциональную схему, и их входные и выходные сигналы. Ознакомиться с		
	лабораторным стендом для выполнения исследований. Выполнить на стенде опыты по срабатыванию		
	реле при различных значениях заданного тока уставки. Снять значения фактических токов уставки		
	при различной величине заданных напряжений. Построить снятую экспериментальную зависимость,		
	оценить ее характер, сделать выводы на основе полученных результатов.		
3	,		
	Изучить физический принцип работы датчика, основанный на нелинейности характеристик		
	магнитных сердечников. Изучить принципиальную схему включения датчика и назначение отдельных		
	ее элементов, а также способа компенсации трансформаторной э.д.с. Ознакомиться с лабораторным		
	стендом для выполнения исследований и правилами включения датчика в измеряемую цепь.		
	Выполнить на стенде опыты по измерению различных значений силового тока. Снять значения		
	выходных напряжений датчика при различном силовом токе. Построить снятую экспериментальную		
4	зависимость, оценить ее характер, сделать выводы на основе полученных результатов.		
4	Датчик тока на базе элемента Холла		
	Изучить физический принцип работы датчика, основанный на эффекте Холла. Изучить		
	принципиальную схему включения датчика и назначение отдельных ее элементов, а также функцию,		
	выполняемую источником стабилизированного тока. Ознакомиться с лабораторным стендом для		
	выполнения исследований и правилами включения датчика в измеряемую цепь. Выполнить на стенде		
	опыты по измерению различных значений силового тока при различном значении напряжения		
	питания датчика. Снять значения выходных напряжений датчика при различном силовом токе для		
	разных величин питающего напряжения. Построить семейство полученных характеристик, объяснить		
-	их различия, сделать выводы на основе полученных результатов.		
5	Динамические звенья автоматизированных систем.		
	Повторить теоретические сведения о динамических звеньях из лекционного курса, описывающие их		
	уравнения, а также их частотные свойства и временные характеристики. Ознакомиться с		
	компьютерным приложением для исследования динамических звеньев, его возможностями,		

№ п/п	Наименование лабораторных работ / краткое содержание	
	функционалом и правилами работы с ним. При помощи данного приложения для выбранных	
	динамических звеньев рассчитать частотные и временные характеристики при произвольно	
	установленных параметрах этих звеньев. Сохранить полученные характеристики в виде графиков и по	
	этим графикам определить ряд показателей переходных процессов. Пользуясь формулами, рассчитать	
	эти же показатели теоретически. Сравнить полученные из опытов и расчетов результаты, сделать	
	выводы об их соответствии.	

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	Подготовка к лабораторным работам
2	Работа с литературой
3	Выполнение курсового проекта.
4	Подготовка к промежуточной аттестации.
5	Подготовка к текущему контролю.

4.4. Примерный перечень тем курсовых проектов Элементы проектирования системы стабилизации тока э.п.с.

ВАРИАНТЫ ЗАДАНИЙ

№ Род тока и U, к Тип т.э.д. Осевая формула (составность)Возбуждение т.э.д. Управление Стабилизация Режим работы

```
2=3 ДК106Б 5?(М+П) — — последов. напр. скор. тяга 3=3 ДК106Б 2?(М+2П+М) — — последов. возб. тока тяга 4=3 ДК106Б 3?(М+П+М) — — независ. напр. тока тяга 5=3 ДК106Б 2?(П+2М+П) — — независ. напр. скор. тяга 6=3 ДК106Б 10М — — независ. возб. тока тяга 7=3 ДК106Б 5?(М+П) — — независ. возб. тока рекуп.
```

1 = 3 ДК106Б $3?(\Pi + M + \Pi)$ — последов. напр. тока тяга

8 = 3 ДК106Б 10М — — независ. возб. тока р. торм.

9 = 3 ДК106Б 5?(М+П) — независ. возб. скор. тяга

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№	Γ	M	
п/п	Библиографическое описание	Место доступа	
1	Автоматизация электроподвижного состава Савоськин	НТБ (уч.3); НТБ (уч.6);	
	Анатолий Николаевич; Баранов Леонид Аврамович; Плакс	НТБ (фб.)	
	Алексей Владимирович; Феоктистов Валерий Павлович;		
	Савоськин Анатолий Николаевич Однотомное издание		
	Транспорт, 1990		
2	Микропроцессорные системы автоведения	НТБ (уч.3); НТБ (уч.6);	
	электроподвижного состава Л.А. Баранов, Я.М. Головичер,	НТБ (фб.)	
	Е.В. Ерофеев, В.М. Максимов; Под ред. Л.А. Баранова		
	Однотомное издание Транспорт, 1990		
1	Методические указания к лабораторной работе "Изучение	НТБ (уч.3)	
	блока управления выпрямительно-инверторным		
	преобразователем типа БУВИП-133 электровоза		
	однофазно-постоянного тока ВЛ85 и исследование его		
	работы" А.Н. Савоськин, О.Е. Пудовиков, А.А. Чучин;		
	МИИТ. Каф. "Электрическая тяга" Однотомное издание		
	МИИТ, 2003		
2	Методические указания к лабораторным работам по дисц.	НТБ (уч.3)	
	"Автоматизация ЭПС" для студентов специализаций		
	"Электрический подвижной состав и его автоматизация" и		
	"Электровозостроение" Сост. А.Н. Савоськин, В.Е. Коваль,		
	Н.И. Ардатский; МИИТ. Каф. "Электрическая тяга"		
	Однотомное издание МИИТ, 1986		

- 6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).
- 1.http://library.miit.ru/ электронно-библиотечная система научно-технической библиотеки МИИТ.
 - 2.http://rzd.ru/ сайт ОАО «РЖД».
 - 3. http://elibrary.ru/ научная электронная библиотека.
 - 4. Поисковые системы: Yandex, Rambler, Google, Mail.
- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

. Компьютеры должны быть обеспечены программным продуктом Microsoft Office не ниже Microsoft Office 2007 (2013).

Для выполнения расчетной части курсового проекта необходимы программы Microsoft Excel и/или MathCad.

- 8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).
 - 11.1. Компьютерный класс кафедры;
- 11.2. Учебные стенды по изучению элементов систем автоматического управления
 - 9. Форма промежуточной аттестации:

Зачет в 3 семестре.

Курсовой проект в 3 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

профессор, профессор, д.н. кафедры «Электропоезда и локомотивы»

А.Н. Савоськин

Согласовано:

Заведующий кафедрой ЭиЛ

О.Е. Пудовиков

Председатель учебно-методической

комиссии

С.В. Володин