МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы специалитета по специальности 23.05.03 Подвижной состав железных дорог, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Автоматизированные и микропроцессорные системы управления электроподвижным составом

Специальность: 23.05.03 Подвижной состав железных дорог

Специализация: Электрический транспорт железных дорог

Форма обучения: Заочная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 167889

Подписал: заведующий кафедрой Космодамианский Андрей

Сергеевич

Дата: 21.02.2023

1. Общие сведения о дисциплине (модуле).

Целью освоения учебной дисциплины «Автоматизированные и микропроцессорные системы управления электроподвижным составом» является формирование у обучающихся компетенций в соответствии с федеральными государственными образовательными стандартами по специальности «Подвижной состав железных дорог»

2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ПК-90** Способен осуществлять расшифровку параметров движения локомотивов и моторвагонного подвижного состава, зафиксированных на бумажных или электронных носителях информации;
- **ПК-91** Способен осуществлять контроль безопасности движения и эксплуатации на железнодорожном транспорте в закрепленных подразделениях.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Владеть:

- практического применения математического пакета Mathcad при решении задач теории линейных автоматических систем;
 - осмысления и анализа полученных результатов.

Знать:

- принципы построения локомотивных автоматических систем управления, регулирования и защиты, в том числе микропроцессорных;
 - основы теории линейных автоматических систем;
- основах методов определения устойчивости и качества работы, методах и средствах, испоызуемых при создании локомотивных автоматических систем;
- принципы действия, настройках и эксплуатации локомотивных автоматических систем управления, регулирования и защиты, в том числе микропроцессорных

Уметь:

• применять полученные знания при расчете, конструировании и испытаниях автоматических устройств, регуляторов и систем управления, регулирования и защиты;

- применять полученные знания при настройке и эксплуатации автоматических систем управления, регулирования и защиты, в том числе микропроцессорных
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 4 з.е. (144 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

		Количество	
Tun yunobun iy oongayiği	часов		
Тип учебных занятий		Сем. № 5	
Контактная работа при проведении учебных занятий (всего):	12	12	
В том числе:			
Занятия лекционного типа	8	8	
Занятия семинарского типа	4	4	

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 132 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

№	Томотичес измичения и ромотич / чисти с с с с с с с с с с с с с с с с с с
Π/Π	Тематика лекционных занятий / краткое содержание
1	Раздел 1. Исходные понятия об автоматическом управ-лении
	Уровни автоматизации производственных и транспортных процессов.
	Автоматическое связывание операций управления и автоматическое ограничение процессов, области
	их применения на ЭПС.
	Автоматическое регулирование. Системы ав-томатического регулирования (САР) тяговых двигателей,
	вспомогательных машин и преобразователей энергии ЭПС.
	Автоматическое управление. Иерархические принципы построения систем управления.
	Системы автоведения и телемеханического управления ЭПС.
	Условия работы систем автоматики на ЭПС. Технико-экономическая эффективность автоматизации ЭПС.
2	Раздел 2. Функциональные схемы систем автоматического управления ЭПС
	Понятие функциональных схем и функциональных элементов автоматических систем. Классификация
	функциональных элементов по назначению.
	Функциональные схемы систем автоматического регулирования, реализующих принципы
	регулирования по возмущению, по отклонению и комбинированный.
	САР стабилизации, программного регулирования и следящие. Одноконтурные и многокон-турные, одноканальные и многоканальные САР.
	одноканальные и многоканальные САР. Системы автоматической стабилизации и программного регулирования тока тяговых двигателей.
	Многоканальные САР ЭПС.
	Многоконтурные системы автоматического управления ЭПС. Двухконтурная система с регу-
	лированием скорости движения поезда и тока тяговых двигателей.
	Примеры функциональных схем САУ, приме-няемых на отечественном ЭПС.
3	Раздел 3. Функциональные элементы САУ ЭПС
	Задающие элементы дискретного и непрерывного типов.
	Промежуточные элементы. Усилители и их классификация. Применение операционных уси-лителей
	для реализации сумматоров, элементов сравнения и элементов, выполняющих нелинейные
	преобразования сигналов. Преобразователи информационных сигналов, применяемые в САУ ЭПС.
	Логические элементы.
	Чувствительные элементы и датчики. Датчики тока и напряжения в цепях переменного тока ЭПС.
	Датчики тока на основе трансформаторов постоянного тока и преобразователя Холла. Датчик угла
	коммутации ЭПС переменного тока с рекуперацией. Датчики скорости на базе тахометрических
	генераторов и индукционные. Управляющие элементы САУ ЭПС. Управляющие элементы для управляемых выпрямителей и
	импульсных преобразователей. Реализация управляющих элементы для управляемых выпрямителей и
	цифровых интегральных микросхем.
	Исполнительные элементы САУ ЭПС. Групповой переключатель как исполнительный элемент на
	ЭПС со ступенчатым регулированием. Управляемый выпрямитель как исполнительный элемент на
	ЭПС однофазно-постоянного тока. Применение импульсных преобразователей для питания тяговых
	двигателей на ЭПС постоянного тока.
4	Раздел 4. Системы автоматического и телемеханического управления ЭПС
	Автономные системы автоведения пассажирских поездов. Централизованные системы автоведения
	поездов метрополитена.
	Системы автоведения электропоездов и грузовых поездов. Телемеханические системы управления ЭПС.
5	Раздел 5. Надежность и техническое обслуживание систем ав-томатики ЭПС
	Надежность функциональных элементов САУ. Расчет показателей надежности элементов и систем
	автоматики ЭПС. Структурная надежность САУ и способы ее повышения.
	Особенности технического обслуживания систем автоматики ЭПС. Способы обеспечения кон-
	тролепригодности и ремонтопригодности систем автоматики. Техническая диагностика САУ ЭПС.

4.2. Занятия семинарского типа.

Практические занятия

№ п/п	Тематика практических занятий/краткое содержание
1	Кодирование двоичным кодом. Аналогово-цифровое преобразование.

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы	
1	самостоятельное изучение и конспектирование отдельных тем учебной литературы, связанных с разделом; работа со справочной и специальной литературой;	
2	Подготовка к промежуточной аттестации.	

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Автоматизация локомо-тивов Грищенко А.В., Базилевский Ф.Ю., Бабков Ю.В. Учебное пособие М.: Маршрут, 2007	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО - ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ "ИНТЕРНЕТ", НЕОБХОДИМЫХ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ1. Официальный сайт РОАТ – http://www.rgotups.ru/ru/

- 2. Официальный сайт МИИТ http://miit.ru/
- 3. Электронные расписания занятий http://appnn.rgotups.ru:8080/scripts/B23.exe/R01
 - 4. Система дистанционного обучения «Космос» http://stellus.rgotups.ru/
 - 5. Официальный сайт библиотеки POAT http://lib.rgotups.ru/
- 6. Поисковые системы «Яндекс», «Google» для доступа к тематическим информационным ресурсам.
- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ, ИСПОЛЬЗУЕМЫХ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕонная аудитория с мультимедиа аппаратурой (желательно наличие интерактивной доски).

Для проведения практических занятий необходимы компьютеры с рабочими местами в компьютерном классе. Компьютеры должны быть обеспечены стандартными литцензионными программными продуктами и обязательно программным продуктом Mircrosoft Office не ниже Microsoft Office 2007 (2013), универсальной интегрированной средой MathCad.

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

ОПИСАНИЕ МАТЕРИАЛЬНО - ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕДля проведения аудиторных занятий и самостоятельной работы требуется:

- 1. Рабочее место преподавателя с персональным компьютером, подключённым к сетям INTERNET и INTRANET.
- 2. Специализированная лекционная аудитория с мультимедиа аппаратурой (желательно наличие интетрактивной доски).
- 3. Для проведения практических занятий: компьютерный класс; кондицио¬нер; компьютеры с минимальными требованиями Pentium 4, ОЗУ 4 ГБ, HDD 100 ГБ, USB 2.0.
 - 9. Форма промежуточной аттестации:

Зачет в 5 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, доцент, к.н. кафедры «Тяговый подвижной состав»

С.И. Баташов

Согласовано:

Заведующий кафедрой ТПС РОАТ

A.C.

Космодамианский

Председатель учебно-методической

комиссии

С.Н. Климов