МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы магистратуры по направлению подготовки 23.04.01 Технология транспортных процессов, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Автономный транспорт и инфраструктура

Направление подготовки: 23.04.01 Технология транспортных процессов

Направленность (профиль): Транспортные системы агломераций

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ) ID подписи: 1174807

Подписал: руководитель образовательной программы Барышев Леонид Михайлович

Дата: 04.07.2025

1. Общие сведения о дисциплине (модуле).

Дисциплина "Автономный транспорт и инфраструктура" посвящена изучению перспективных технологий автономного транспорта (беспилотных автомобилей, дронов, роботизированных систем) и инфраструктуры, необходимой для их эффективного функционирования. Курс охватывает ключевые аспекты работы автономных транспортных средств (АТС), включая сенсорные системы, алгоритмы управления, взаимодействие с дорожной инфраструктурой, нормативно-правовое регулирование и вопросы кибербезопасности. Особое внимание уделяется интеграции АТС в существующие транспортные системы и проектированию "умной" инфраструктуры, адаптированной для беспилотных технологий.

Цель освоения дисциплины «Автономный транспорт и инфраструктура»: формирование у обучающихся комплексного понимания технологий автономного транспорта, принципов его взаимодействия с инфраструктурой, а также развитие навыков проектирования и анализа систем, обеспечивающих безопасную и эффективную работу беспилотных транспортных средств.

Задачи освоения дисциплины:

- 1. Изучить архитектуру и ключевые компоненты автономных транспортных средств (лидары, радары, камеры, системы позиционирования).
- 2. Освоить принципы работы алгоритмов автономного управления (SLAM, компьютерное зрение, нейросетевые модели).
- 3. Анализировать взаимодействие ATC с инфраструктурой (V2I, V2X) и другими участниками движения (V2V).
- 4. Изучить требования к дорожной инфраструктуре для автономного транспорта (умные перекрестки, цифровые двойники, телекоммуникационные сети).
- 5. Исследовать нормативно-правовые аспекты эксплуатации ATC (международные и российские стандарты, вопросы страхования и ответственности).
- 6. Оценивать риски и угрозы, связанные с кибербезопасностью автономных систем.
- 7. Разрабатывать концепции интеграции АТС в городскую и межгородскую транспортную сеть.
- 8. Анализировать социально-экономические эффекты от внедрения автономного транспорта (изменение мобильности, влияние на экологию, рынок труда).

2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ПК-1** Способен к выполнению отдельных работ при разработке проектов развития транспортной системы агломераций;
- **УК-1** Способен осуществлять критический анализ проблемных ситуаций на основе системного подхода, вырабатывать стратегию действий.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- решения разных видов прикладных задач современного искусственного интеллекта, включая методы машинного обучения, нейронные сети, обработку естественного языка и компьютерное зрение, а также их применение в различных отраслях;
- принципы работы распределённых вычислений и edge-архитектур для децентрализованной обработки данных в робототехнических системах и IoT-устройствах.

Уметь:

- применять полученные знания для решения прикладных задач современного искусственного интеллекта, разрабатывать и оптимизировать алгоритмы, проводить эксперименты и анализировать результаты, а также интегрировать решения в существующие системы и приложения;
- адаптировать готовые AI-модели под специфические требования проектов (transfer learning, fine-tuning) и развёртывать их на встраиваемых системах (Jetson, Raspberry Pi) с учётом ограничений по вычислительным ресурсам.

Владеть:

- теоретическими знаниями об инструментах, библиотеках и правилах упрощения задач разработки программного обеспечения роботов, а также навыками работы с основными языками программирования и фреймворками, используемыми в области робототехники и искусственного интеллекта;
- методами отладки и тестирования робототехнических систем, включая симуляцию в виртуальных средах (Gazebo, ROS, Unity3D) и валидацию на реальных аппаратных платформах.

3. Объем дисциплины (модуля).

3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 3 з.е. (108 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Tura vivo Savaravivi	Количество часов	
Тип учебных занятий		Семестр №3
Контактная работа при проведении учебных занятий (всего):	32	32
В том числе:		
Занятия лекционного типа	16	16
Занятия семинарского типа	16	16

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 76 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

№ п/п	Тематика лекционных занятий / краткое содержание
1	Введение в Robot Operating System.
	Понимание архитектуры ROS, его компонентов и принципов работы. Знакомство с концепциями
	узлов, топиков, сервисов и сообщений.
	Основы разработки приложений на ROS, включая создание и настройку пакетов, написание узлов
	на Python и C++.
	Изучение стандартных пакетов, поставляемых с ROS, таких как rosbag, rviz, gazebo и другие, для
	работы с сенсорными данными и симуляцией.

3.0		
No	Тематика лекционных занятий / краткое содержание	
п/п	тематика мекционизих запитии у краткое содержание	
	Обзор инструментов, таких как rviz для визуализации данных и rqt для мониторинга системы.	
	Методы отладки узлов и анализа производительности.	
2	Введение в машинное обучение.	
	Понимание основных понятий, таких как обучение с учителем и без учителя, выбор модели и	
	переобучение.	
Изучение архитектур нейронных сетей, включая полносвязные сети, свёрточные нейро		
	(CNN) и рекуррентные нейронные сети (RNN).	
	Применение CNN для классификации изображений, включая подготовку данных, обучение модели	
	и оценку её эффективности.	
	Методы кластеризации изображений с использованием алгоритмов, таких как K-means и DBSCAN,	
	а также применение нейронных сетей для извлечения признаков.	
3	Задача фильтрации данных	
	Понимание целей фильтрации данных в контексте робототехники и обработки сигналов.	
	Изучение различных методов фильтрации, таких как фильтры Калмана, частичные фильтры и	
	фильтры низких частот.	
	Практическое применение алгоритмов фильтрации для обработки сенсорных данных в реальном	
	времени и уменьшения шумов.	
4	Задача одновременной локализации и построения карты SLAM.	
	Понимание концепции SLAM, его компонентов и важности для мобильных роботов.	
	Обзор различных алгоритмов SLAM, включая EKF-SLAM, FastSLAM и GMapping.	
	Использование нейронных сетей для обработки изображений в контексте SLAM, включая	
	извлечение признаков и сопоставление объектов.	
	Изучение различных форматов карт (например, растровые карты, векторные карты) и подходов к их	
	хранению и обновлению.	
5	Задача построения пути	
	Понимание задач планирования пути в робототехнике, включая цель, ограничения и методы.	
	Изучение различных алгоритмов, таких как A*, Dijkstra's и RRT (Rapidly-exploring Random Tree).	
	Как использовать данные от сенсоров для динамического планирования пути в изменяющейся	
	среде. Разработка приложений для мобильных роботов, включая тестирование и оптимизацию алгоритмов	
	построения пути в реальных условиях.	
6	Задача управления роботом на основе сенсорных данных	
0		
	Основы управления роботами: обратная связь, ПИД-регуляторы, адаптивное управление. Интеграция данных с датчиков (лидары, камеры, IMU) в систему управления.	
	Реализация алгоритмов управления в ROS: написание узлов для двигателей и исполнительных	
	механизмов.	
	Примеры применения: автономная навигация, манипуляция объектами, избегание препятствий.	
	Тестирование и отладка системы управления в симуляторах (Gazebo) и на реальных роботах.	
7	Введение в компьютерное зрение для робототехники	
′	Основы обработки изображений: фильтрация, детектирование границ, морфологические операции.	
	Детектирование и распознавание объектов: методы на основе классического ML (Haar cascades,	
	НОG) и нейросетей (YOLO, SSD).	
	Стереозрение и 3D-реконструкция: работа с depth-камерами (Kinect, RealSense), алгоритмы SLAM	
	на основе визуальных данных.	
	Интеграция с ROS: использование библиотек OpenCV и ROS-пакетов (cv_bridge, image_transport)	
	для обработки видео в реальном времени.	
	Практические кейсы: навигация робота по визуальным меткам, распознавание жестов, АR-маркеры	
	(AprilTags).	
8	Разработка многоагентных робототехнических систем	
	Принципы многоагентного управления: централизованные vs. децентрализованные архитектуры,	
	1 71 7	

№ п/п	Тематика лекционных занятий / краткое содержание
	роевой интеллект.
	Координация и коммуникация: протоколы обмена данными (ROS topics, services, TF), избегание
	коллизий.
	Алгоритмы распределённых задач: auction-based allocation, consensus algorithms, flocking.
	Симуляция и тестирование: инструменты (Gazebo, Webots), моделирование взаимодействия
	агентов.
	Применение: доставка грузов дронами, автономные складские роботы (Kiva/Amazon Robotics),
	исследование опасных сред.

4.2. Занятия семинарского типа.

Практические занятия

No	Тематика практических занятий/краткое содержание		
Π/Π			
1	Работа с ROS: читатели, писатели, средства отладки и визуализации		
1	Обзор Robot Operating System (ROS), его архитектуры и основных компонентов. Понимание роли		
	узлов, топиков и сообщений в системе.		
	Как создавать узлы, которые могут отправлять и получать данные через топики. Примеры		
	реализации на Python и C++.		
	Форматы сообщений, создание пользовательских сообщений и использование стандартных типов.		
	Обзор сериализации данных для передачи.		
	Инструменты для мониторинга работы системы, такие как rosnode, rostopic, и rosservice. Как		
	использовать их для диагностики проблем и анализа производительности.		
	Использование rviz для визуализации сенсорных данных, таких как лазерные сканирования и карты.		
	Примеры настройки визуализации для различных типов данных.		
2	Методы локализации и SLAM		
	Определение локализации в контексте мобильных роботов. Различие между абсолютной и		
	относительной локализацией.		
	Обзор различных методов, таких как однократная точечная локализация (GPS), визуальная		
	локализация (VSLAM) и использование инерциальных измерительных устройств (IMU).		
	Понимание концепции одновременной локализации и построения карты (SLAM). Как SLAM		
	позволяет роботу одновременно определять своё местоположение и строить карту окружающей		
	среды.		
	Изучение алгоритмов SLAM, таких как EKF-SLAM, FastSLAM и ORB-SLAM. Сравнение их		
	преимуществ и недостатков в различных сценариях.		
	Реальные примеры использования SLAM в робототехнике, включая мобильные роботы и дроны.		
	Обсуждение вызовов и решений при реализации SLAM в реальных условиях.		
3	Задача фильтрации данных		
	Понимание важности фильтрации данных в робототехнике для уменьшения шума и улучшения		
	точности сенсорных данных.		
	Обзор различных методов фильтрации, таких как фильтры Калмана, частичные фильтры и фильтры		
	на основе нейронных сетей. Понимание принципов работы каждого из них.		
	Как применять фильтрацию данных в системах реального времени. Примеры использования		
	фильтров для обработки данных от лазерных сканеров, камер и других сенсоров.		
	Реализация фильтров в ROS для обработки данных от сенсоров. Примеры кода и обсуждение		
	результатов.		
	Методы оценки качества фильтрации данных, включая статистические методы и визуализацию		
	результатов.		
4	Симуляция автономного транспорта при помощи Duckietown		
	Обзор Duckietown как платформы для обучения и исследования в области автономного транспорта.		

No	T 1
п/п	Тематика практических занятий/краткое содержание
	Основные компоненты системы, включая физическую платформу и программное обеспечение. Понимание структуры Duckietown, включая использование ROS для управления роботами и взаимодействия между компонентами.
	использование симуляторов, таких как Gazebo, для моделирования работы роботов в Duckietown. Примеры настройки симуляции и взаимодействия с окружением.
Примеры настроики симуляции и взаимодеиствия с окружением. Исследование алгоритмов, используемых для автономной навигации в Duckietown, планирование пути и управление движением.	
	Разработка собственных проектов на основе Duckietown, включая создание узлов ROS для управления транспортом и реализацию задач SLAM или фильтрации данных. Подходы к
	тестированию и отладке на симуляторе перед переходом к реальным роботам.
5	Разработка автономных алгоритмов для мобильных роботов
	Ключевые принципы автономности: восприятие окружения, принятие решений, управление.
	Интеграция данных от лидаров, камер и одометрии для построения модели окружения. Алгоритмы реактивного управления (например, векторное поле гистограмм) и их реализация в ROS.
	Динамическое перепланирование пути при обнаружении препятствий. Примеры с использованием RRT* и DWA (Dynamic Window Approach).
	Тестирование алгоритмов в симуляторах (Gazebo, Webots) и на реальных платформах (TurtleBot, Jackal).
6	Применение компьютерного зрения в робототехнике
	Основные задачи: обнаружение объектов, трекинг, 3D-реконструкция.
	Инструменты: OpenCV, PCL (Point Cloud Library), интеграция с ROS через cv_bridge и
	image_transport.
	Готовые ROS-пакеты для CV: darknet_ros (YOLO), apriltag_ros (маркерная навигация).
	Оптимизация CV-алгоритмов для работы в реальном времени на одноплатных компьютерах (Jetson,
	Raspberry Pi). Примеры проектов: автономная парковка по AR-маркерам, сборка объектов манипулятором на
	основе визуального позиционирования.
7	Разработка ROS-пакетов для промышленных роботов-манипуляторов
,	Архитектура управления манипуляторами: обзор ROS-интерфейсов (MoveIt!, ROS-Control) и их интеграция с промышленными роботами (UR, KUKA, Fanuc).
	Планирование траекторий: использование OMPL (Open Motion Planning Library) для коллаборативных роботов (cobots).
	Обратная связь и калибровка: работа с энкодерами, силомоментными датчиками и коррекция траекторий в реальном времени.
	Примеры задач: сортировка объектов, точечная сварка, покраска. Тестирование в симуляторах (Industrial ROS, PyBullet).
	Безопасность: реализация emergency-stop и зон ограничения скорости через ROS-пакеты.
8	Беспроводная связь и облачная интеграция для робототехнических систем
	Протоколы связи: ROS over Wi-Fi/5G, MQTT, DDS (Data Distribution Service) для распределённых систем.
	Облачные ROS-решения: AWS RoboMaker, ROS 2 Cloud Bridge. Оффлайн-навигация с подгрузкой карт из облака.
	Удалённый мониторинг и управление: веб-интерфейсы (ROSlibjs, Foxglove Studio), защита данных (TLS/SSL).
	Edge-вычисления: обработка данных на периферии (Jetson, Coral AI) с синхронизацией через облако.
	Кейсы: рои дронов с централизованным управлением, автономные погрузчики на smart-складах.

4.3. Самостоятельная работа обучающихся.

№	Вид самостоятельной работы	
п/п	Bild camorion controlled	
1	Изучение дополнительной литературы.	
2	Подготовка к практическим занятиям.	
3	Подготовка к промежуточной аттестации.	
4	Подготовка к текущему контролю.	

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Бирюков, В. В. Автономный электрический транспорт: учебник / В. В. Бирюков. — Новосибирск: НГТУ, 2019. — 302 с. — ISBN 978-5-7782-3934-0	https://e.lanbook.com/book/152144
2	Лебедев, Е. А. Основы логистики транспортного производства и его цифровой трансформации : учебное пособие / Е. А. Лебедев, Л. Б. Миротин 2-е изд Москва ; Вологда : Инфра-Инженерия, 2024 212 с ISBN 978-5-9729-1652-8.	https://znanium.ru/catalog/document?id=451940
3	Лохин, В. М. Теория автоматического управления: методические указания / В. М. Лохин, Н. А. Казачек. — 2-е изд., доп. — Москва: РТУ МИРЭА, 2024. — 61 с.	https://e.lanbook.com/book/448760

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Официальный сайт РУТ (МИИТ) (https://www.miit.ru/).

Научно-техническая библиотека РУТ (МИИТ) (http:/library.miit.ru).

Образовательная платформа «Юрайт» (https://urait.ru/).

Общие информационные, справочные и поисковые системы «Консультант Плюс», «Гарант».

Электронно-библиотечная система издательства «Лань» (http://e.lanbook.com/).

Электронно-библиотечная система ibooks.ru (http://ibooks.ru/).

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Microsoft Internet Explorer (или другой браузер).

Операционная система Microsoft Windows.

Microsoft Office.

Система автоматизированного проектирования Autocad.

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебные аудитории для проведения учебных занятий, оснащенные компьютерной техникой и наборами демонстрационного оборудования.

9. Форма промежуточной аттестации:

Зачет в 3 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

ассистент Высшей инженерной

школы Д.В. Станкевич

Согласовано:

Директор Б.В. Игольников

Руководитель образовательной

программы Л.М. Барышев

Председатель учебно-методической

д.В. Паринов