МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 27.03.05 Инноватика, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Алгоритмы решения нестандартных задач

Направление подготовки: 27.03.05 Инноватика

Направленность (профиль): Управление цифровыми инновациями

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 2221

Подписал: заведующий кафедрой Тарасова Валентина

Николаевна

Дата: 01.06.2022

1. Общие сведения о дисциплине (модуле).

Целями освоения дисциплины «Алгоритмы решения нестандартных задач» являются:

- Фундаментализация образования, формирование мировоззрения и развитие системного стиля мышления.
- Знакомство с основными законами функционирования и эволюции технических систем.
- Подготовка к использованию интеллектуальных технологий при решении нестандартных задач в процессе разработке и при организации производства инновационных продуктов.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-2** Способен формулировать задачи профессиональной деятельности на основе знаний профильных разделов математических, технических и естественно-научных дисциплин (модулей);
- **ОПК-3** Способен использовать фундаментальные знания для решения базовых задач управления в технических системах с целью совершенствования в профессиональной деятельности;
- **ОПК-4** Способен осуществлять оценку эффективности систем управления, разработанных на основе математических методов;
- **УК-1** Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Уметь:

- анализировать задачу, выделяя ее базовые составляющие.

Владеть:

- применять общие законы физики в обосновании технических решений в процессе разработки инновационного проекта.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 4 з.е. (144 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
тип учесных занятии		Семестр №4
Контактная работа при проведении учебных занятий (всего):	80	80
В том числе:		
Занятия лекционного типа	32	32
Занятия семинарского типа	48	48

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 64 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

№	Тематика лекционных занятий / краткое содержание	
Π/Π		
1	Введение	
	Рассматриваемые вопросы:	
	- место дисциплины в подготовке специалиста по управлению инновациями;	
	- основные задачи дисциплины;	
	- основные качества хорошего специалиста;	
	- изобретательствая деятельность - высшая форма инженерного творчества;	
	- роль изобретательской деятельности в развитии человечества;	
	- движущие силы возникновения и развития техносферы;	
	- история защиты интеллектуальной собственности;	
	- основные положения патентной защиты в РФ;	

№	Тематика лекционных занятий / краткое содержание			
п/п	тематика лекционных занятии / краткое содержание			
	- структура процесса проектирования новой техники и место изобретательства в этом процесс			
	- экологические проблемы;			
	- оборотная сторона развития техники;			
	- роль экологического мышления в инновационном менеджменте.			
2	Введение в системный подход (системный анализ, системный синтез) Рассматриваемые вопросы:			
	- основные понятия;			
	- принципы;			
	- процедуры.			
3	Законы функционирования и развития (эволюции) технических систем			
4	Исторический анализ этапов разработки методов интенсификации инженерного			
	творчества.			
	Рассматриваемые вопросы:			
	- основные положения "Теории решения изобретательских задач" (ТРИЗ);			
	- уровни сложности задач;			
	- стратегия и тактика решения нестандартных задач.			
5	Методы анализа технических систем в процессе реализации инновационных			
	проектов			
	Рассматриваемые вопросы:			
	- виды противоречий развития технических систем;			
	- психологические методы активизации творческого процесса;			
	- алгоритмизация процессов поиска новых технических решений;			
	- структура алгоритмов решения нестандартных задач;			
	- информационный фонд для решения нестандартных задач (обзор, структура).			

4.2. Занятия семинарского типа.

Практические занятия

No	T. ~/			
п/п	Тематика практических занятий/краткое содержание			
1	Введение			
	Рассматриваемые вопросы:			
	- структурно-функциональный анализ технической системы.			
2	Введение в системный подход (системный анализ, системный синтез).			
	Рассматриваемые вопросы:			
	- основные понятия, принципы, процедуры;			
	- решение задачи на синтез технической системы.			
3	Законы функционирования и развития (эволюции) технических систем. Рассматриваемые вопросы:			
	- решение задач методом фокальных объектов (метод переноса свойств случайных объектов на			
	совершенствуемую систему).			
4	Исторический анализ этапов разработки методов интенсификации инженерного			
	творчества.			
	Рассматриваемые вопросы:			
	- основные положения "Теории решения изобретательских задач" (ТРИЗ);			
	- поиск решения задач методом мозгового штурма (коллективный метод генерации идей).			
5	Методы анализа технических систем в процессе реализации инновационных			
	проектов			

№ п/п	Тематика практических занятий/краткое содержание
	Рассматриваемые вопросы:
	- решение задач с применением алгоритма "Предварительный анализ".

4.3. Самостоятельная работа обучающихся.

$N_{\underline{0}}$	Вид самостоятельной работы		
п/п	Bild came to Attend to the		
1	Введение		
2	Введение в системный подход (системный анализ, системный синтез).		
	Основные понятия, принципы, процедуры.		
3	Законы функционирования и развития (эволюции) технических систем.		
4	Исторический анализ этапов разработки методов интенсификации инженерного		
	творчества.		
	Основные положения "Теории решения изобретательских задач" (ТРИЗ).		
5	Методы анализа технических систем в процессе реализации инновационных		
	проектов		
6	Подготовка к промежуточной аттестации.		
7	Подготовка к текущему контролю.		

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Рождение изобретения (стратегия и тактика решения	НТБ РУТ(МИИТ)
	изобретательских задач) Гасанов А.И. Гохман Б.М., и др.	
	Интерпракс, М., 1995	
2	Поиск новых идей: от озарения к технологии //теория и	НТБ РУТ(МИИТ)
	практика решения изобретательских задач Альтшуллер	
	Г.С, Злотнн Б.Л., Зусман А.В., Филатов В.И. Кишинев	
	1989	
3	Методы проектирования Джонс Дж.К. 1986	НТБ РУТ(МИИТ)
4	Конструктор и экономика: ФСА для конструктора.	НТБ РУТ(МИИТ)
	Соболев Ю.М Пермь , 1987	
5	Теория и практика решения технических задач Ревенков	НТБ РУТ(МИИТ)
	А.В., Резчикова Е.В Форум, М, 2012	
1	Анализ технической информации и генерация новых идей	НТБ РУТ(МИИТ)
	Шпаковский Н.А Форум, М, 2012	
2	ТРИЗ\Учебное пособие Петров В.М.	НТБ РУТ(МИИТ)

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Официальный сайт РУТ (МИИТ) (https://www.miit.ru/);

Официальный сайт Минтранса России (https://mintrans.gov.ru/);

Научно-техническая библиотека РУТ (МИИТ) (http:/library.miit.ru);

Информационный портал Научная электронная библиотека eLIBRARY.RU (www.elibrary.ru);

Образовательная платформа «Открытое образование» (https://openedu.ru);

Официальный сайт Минобрнауки России (http://www.mon.gov.ru);

Электронно-библиотечная система издательства «Лань» (http://e.lanbook.com/);

Поисковые системы: Yandex, Google, Mail.

- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).
 - 1. Microsoft Internet Explorer (или другой браузер);
 - 2. Операционная система Microsoft Windows;
 - 3. Microsoft Office;
- 4. При проведении занятий с применением электронного обучения и дистанционных образовательных технологий,

могут применяться следующие средства коммуникаций: ЭИОС РУТ(МИИТ), Microsoft Teams, электронная почта, скайп,

WhatsApp и т.п.

- 8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).
- 1. Учебные аудитории для проведения занятий лекционного типа, оснащенные компьютерной техникой и наборами

демонстрационного оборудования.

9. Форма промежуточной аттестации:

Экзамен в 4 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, к.н. кафедры «Путь и

путевое хозяйство» К.В. Меренченко

Согласовано:

Заведующий кафедрой УИТ В.Н. Тарасова

Председатель учебно-методической

комиссии С.В. Володин