МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 09.03.02 Информационные системы и технологии, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Анализ человеко-машинных систем

Направление подготовки: 09.03.02 Информационные системы и

технологии

Направленность (профиль): Информационные системы и технологии на

транспорте

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 5665

Подписал: заведующий кафедрой Нутович Вероника

Евгеньевна

Дата: 22.04.2025

1. Общие сведения о дисциплине (модуле).

Целями освоения дисциплины (модуля) являются:

- изучение студентами принципов и подходов, используемых в построении человеко машинных интерфейсов информационных систем;
- изучение студентами характерных особенностей внешней и внутренней организации и взаимодействия IT-компаний.

Задачами дисциплины (модуля) являются

- изучение парадигм и принципов построения человеко-машинных интерфейсов;
- ознакомление с правилами разработки интерфейсов различных видов для применения в проектировании и развитии ИС;
- изучение тенденций и проблем развития человеко-машинных интерфейсов.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-1** Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности;
- **ПК-3** Способен оценивать удобство, простоту использования и эргономичность программных продуктов и/или аппаратных средств, в том числе планирование исследования, проведение, сбор и анализ данных.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Уметь:

- обосновывать естественнонаучные и общеинженерные требования на основе анализа качества информационных систем;
- обосновывать технические и эргономические требования на основе анализа качества программных продуктов и/или аппаратных средств.

Знать:

- основные правила и приёмы качественных и количественных исследований в инженерной и управленческой деятельности;
- основные правила и приёмы качественных и количественных обоснований технических и управленческих решений.

Владеть:

- методами математического анализа и моделирования, оценки технических и пользовательских характеристик информационных систем;
- методами оценки технических и пользовательских характеристик информационных систем.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 4 з.е. (144 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Tura variofica va poveznači	Количество часов	
Тип учебных занятий		Семестр №8
Контактная работа при проведении учебных занятий (всего):	60	60
В том числе:		
Занятия лекционного типа		30
Занятия семинарского типа	30	30

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 84 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

No				
	Тематика лекционных занятий / краткое содержание			
п/п				
1	Человеко-машинные системы (ЧМС)			
	Рассматриваемые вопросы:			
	- междисциплинарные связи;			
	- основные понятия;			
	- исторический аспект;			
	- теоретико-методологические позиции анализа проблем взаимодействия человека и техники.			
2				
	Рассматриваемые вопросы:			
	- распределение функций в ЧМС;			
	- понятие информационного взаимодействия.			
3	Психофизиологический базис операторской деятельности			
	Рассматриваемые вопросы:			
	- приём и первичная обработка информации оператором;			
	- хранение и переработка информации человеком, принятие решений и познавательные процессы;			
	- речевые коммуникации в операторской деятельности;			
	- механизмы регуляции деятельности человека.			
4	Человек как исполнительная система. Психомоторные качества человека			
	Рассматриваемые вопросы:			
	- антропометрические характеристики;			
	- биомеханические характеристики;			
	- рабочие движения оператора. Сенсомоторная регуляция.			
5	Деятельность человека-оператора			
	Рассматриваемые вопросы:			
	- психологический анализ деятельности;			
	- понятия «рабочее место» и «рабочее пространство»;			
	- ошибки операторов;			
	- виды операторской деятельности.			
6	Инженерно-психологическое и эргономическое проектирование интерфейса			
	«человек –машина» и рабочей среды			
	Рассматриваемые вопросы:			
	- системный подход, особенности его применения при проектировании информационных моделей и			
	сред;			
	- проектирование средств отображения информации;			
	- проектирование органов управления;			
	- организация рабочего места оператора;			
	- проектирование пользовательских интерфейсов;			
	- системы виртуальной реальности;			
	- виртуальные интерфейсы;			
	- юзабилити;			
	- эмоциональный дизайн (канзай-инжиниринг).			
7	Система эргономического обеспечения разработок и эксплуатации			
	эрготехнических сред			
	Рассматриваемые вопросы:			
	- особенности системы эргономического обеспечения разработки и эксплуатации систем «человек –			
	машина»;			
	- этапы и последовательность эргономического обеспечения;			
	- эргономические стандарты;			
	- эргономическая экспертиза.			
8	Эффективность систем «человек — машина». Пути её повышения			
	Рассматриваемые вопросы:			

№ п/п	Тематика лекционных занятий / краткое содержание
	- надёжность оператора и системы «человек – машина». Ресурсный подход; - профессиональный отбор и обучение операторов;
	- групповая деятельность операторов;
	- психологические аспекты эксплуатации человеко-машинных систем.

4.2. Занятия семинарского типа.

Лабораторные работы

№	Наименование лабораторных работ / краткое содержание				
Π/Π					
1	Анализ трудового процесса				
	В результате работы на занятии, студент получает навык				
	проработки метода анализа уровней регуляции операторской деятельности, анализ ошибок				
	операторов.				
2	Функциональное состояние человека				
	В результате работы на занятии, студент получает навык				
	изучения методов субьективной оценки функциональных состояний человека, проработку методов				
	и прикладных программ психологической саморегуляции функциональных состояний.				
3	Функциональное состояние человека				
	В результате работы на занятии, студент получает навык:				
	исследование изменения эмоционально-личностной сферы при развитии хронического утомления.				
4	Эргономика рабочего места				
	В результате работы на занятии, студент получает навык				
	изучения методов оценки удобства и дискомфорта рабочей позы в положении сидя.				
5	Эргономика рабочего места				
	В результате работы на занятии, студент получает навык:				
	расчеты эргономических параметров рабочих мест с учетом учета антропометрических данных,				
	использование векторно-координатного метода оценки рабочих мест.				
6	Использование прикладных человеко-машинных систем на ж/д транспорте				
	В результате работы на занятии, студент получает навык:				
	изучение экспертных систем, автоматизированные системы управления на ж/д транспорте.				
7	Использование прикладных человеко-машинных систем на ж/д транспорте				
	В результате работы на занятии, студент получает навык:				
	моделирование человеко-машинных систем, анализ видов и принципов управления.				
8	Использование прикладных человеко-машинных систем на ж/д транспорте				
	В результате работы на занятии, студент получает навык:				
	диспетчерское управление, оценка потенциала сложных человеко-машинных систем.				

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы	
1	Изучение дополнительной литературы	
2	Подготовка к лабораторным работам	
3	Проработка материала лекций	
4	Подготовка к промежуточной аттестации.	

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/ п	Библиографическо е описание	Место доступа
1	Солсо Р.Л. Когнитивная психология / Р.Л. Солсо. – СПб. : "Питер", 2006, 600 с.	https://cppm.kuro-mo.ru/images/Когнитивная_психология_Роберт_Солсо_2006_6-e_изд589c.pdf
2	Инженерная и профессиональная психология: Учеб. пособие для вузов / Ю. К. Стрелков М.: Высш. шк.: Асаdemia, 2001 358, [1] с.: ил.; 22 см (Высшее образование).; ISBN 5-7695-0651-2	https://kitobkhona.qjf.tj/wp-content/uploads/2021/12/Inzhenernaya_i_profesionalnaya_psikhologiya.pdf
3	Исаев Г.Н. Управление качеством информационных систем / Г.Н. Исаев Москва: Инфра-М, 2016 248 с ISBN 978- 5-16-011794-2.	https://files.student-it.ru/previewfile/404

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Официальный сайт РУТ (МИИТ) (https://www.miit.ru/).

Научно-техническая библиотека РУТ (МИИТ) (http:/library.miit.ru).

Образовательная платформа «Юрайт» (https://urait.ru/).

Общие информационные, справочные и поисковые системы «Консультант Плюс», «Гарант».

Электронно-библиотечная система издательства «Лань» (http://e.lanbook.com/).

Электронно-библиотечная система ibooks.ru (http://ibooks.ru/).

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Microsoft Internet Explorer (или другой браузер).

Операционная система Microsoft Windows.

Microsoft Office.

Система автоматизированного проектирования Autocad.

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебные аудитории для проведения учебных занятий, оснащенные компьютерной техникой и наборами демонстрационного оборудования.

9. Форма промежуточной аттестации:

Зачет в 8 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

М.В. Сокольская

Согласовано:

Заведующий кафедрой ЦТУТП

В.Е. Нутович

Председатель учебно-методической

комиссии Н.А. Андриянова