МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА»

УТВЕРЖДАЮ:

Директор ИТТСУ

П.Ф. Бестемьянов

26 мая 2020 г.

Кафедра «Электропоезда и локомотивы»

Авторы Савоськин Анатолий Николаевич, д.т.н., профессор

Сердобинцев Евгений Васильевич, д.т.н., профессор

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Аналитическая механика

Направление подготовки: 13.03.02 — Электроэнергетика и электротехника
Профиль: Электрический транспорт
Квалификация выпускника: Бакалавр
Форма обучения: очно-заочная
Год начала подготовки 2020

Одобрено на заседании

Учебно-методической комиссии института

Протокол № 10 26 мая 2020 г.

Председатель учебно-методической

комиссии

Одобрено на заседании кафедры

Протокол № 13 20 мая 2020 г.

Заведующий кафедрой

О.Е. Пудовиков

С.В. Володин

1. ЦЕЛИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Цель преподавания дисциплины — изложение некоторых методов аналитической механики, применяемых для исследования динамики дос-таточно сложных систем, представляющих собой модели реальных конструкций подвижного состава (п.с.) железных дорог. В связи с развитием и совершенствованием методов исследования динамических процессов в рельсовом подвижном составе, возникает необходимость конкретизировать и выделить отдельные важные для рассматриваемого профиля №12 «Электрический транспорт» вопросы механики. Настоящий курс должен подготовить студента к восприятию методов, используемых при описании статического и динамического состояния подвижного состава с использованием современной вычислительной техники.

Задачи дисциплины:

- -студент должен приобрести навыки выбора наиболее подходящего метода решения конкретных задач по исследованию движения сложных систем;
- -студент должен приобрести навыки разработки кинематических схем моделей электроподвижного состава(э.п.с.);
- -уметь определить число степеней свободы и создать математическую модель э.п.с. путем составления систем дифференциальных уравнений;
- -уметь составить и решить уравнения движения всех видов подвижного состава;
- -овладеть методами исследования свободных и вынужденных колеба-ний моделей электроподвижного состава;
- -иметь опыт анализа результатов исследований и выбора на основании этого анализа необходимых параметров рессорного подвешивания.
- приобретение студентами навыков самостоятельной работы с науч-но-технической литературой по исследованию динамики э.п.с.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ОП ВО

Учебная дисциплина "Аналитическая механика" относится к блоку 1 "Дисциплины (модули)" и входит в его вариативную часть.

2.1. Наименования предшествующих дисциплин

Для изучения данной дисциплины необходимы следующие знания, умения и навыки, формируемые предшествующими дисциплинами:

2.1.1. Теоретическая механика:

Знания: понятия и законы статики, кинематики и динамики твердых тел; современные образовательные и информационные технологии

Умения: использовать на практике механические модели движения тела (системы тел) с применением соответствующего математического аппарата на основе законов динамики; пользоваться современными образовательными и информационными технологиями

Навыки: способностью на основе знаний законов статики и динамики твердых тел исследовать работу элементов подвижного состава; способностью, приобретать новые математические и естественнонаучные знания, используя современные образовательные и информационные технологии

2.2. Наименование последующих дисциплин

Результаты освоения дисциплины используются при изучении последующих учебных дисциплин:

2.2.1. Конструкция и расчёт механического оборудования электрического транспорта

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ), СООТНЕСЕННЫЕ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

В результате освоения дисциплины студент должен:

№ п/п	Код и название компетенции	Ожидаемые результаты
1	ПКС-7 Способен проводить экспертизу и	ПКС-7.1 Владеет технологиями проектирования и
	разрабатывать проекты узлов и устройств,	моделирования узлов и устройств подвижного
	технологических процессов производства и	состава, соответствующих современным
	эксплуатации, технического обслуживания и	достижениям науки и техники, в том числе с
	ремонта тягового подвижного состава	применением информационных технологий и
		пакетов прикладных программ.
		пакетов прикладных программ.

4. ОБЪЕМ ДИСЦИПЛИНЫ (МОДУЛЯ) В ЗАЧЕТНЫХ ЕДИНИЦАХ И АКАДЕМИЧЕСКИХ ЧАСАХ

4.1. Общая трудоемкость дисциплины составляет:

4 зачетных единиц (144 ак. ч.).

4.2. Распределение объема учебной дисциплины на контактную работу с преподавателем и самостоятельную работу обучающихся

	Количеств	о часов
Вид учебной работы	Всего по учебному плану	Семестр 7
Контактная работа	42	42,15
Аудиторные занятия (всего):	42	42
В том числе:		
лекции (Л)	16	16
практические (ПЗ) и семинарские (С)	26	26
Самостоятельная работа (всего)	66	66
Экзамен (при наличии)	36	36
ОБЩАЯ трудоемкость дисциплины, часы:	144	144
ОБЩАЯ трудоемкость дисциплины, зач.ед.:	4.0	4.0
Текущий контроль успеваемости (количество и вид текущего контроля)	КР (1), ПК1, ПК2	КР (1), ПК1, ПК2
Виды промежуточной аттестации (экзамен, зачет)	ЭК	ЭК

4.3. Содержание дисциплины (модуля), структурированное по темам (разделам)

						еятельност	ги в часах/	1	Формы текущего
№ π/π	Семестр	Тема (раздел) учебной дисциплины		БТОМ	числе инт		уи форме	O O	контроля успеваемости и промежу-
			П	Ш	EII	KCP	CP	Всего	точной аттестации
1	2	3	4	5	6	7	8	9	10
1	7	Раздел 1 Введение	6		6		15	27	КР
2	7	Раздел 2 Раздел 1. Основы аналитической механики	6		10		20	36	ПК1
3	7	Раздел 3 Раздел 3. Линейные колебания системы с двумя и конечным	2		4		21	63	ЭК
4	7	Тема 3.1 3.1 Методы исследования линейных колебаний систем Кинетическая и потенциальная энергия системы с двумя степенями свободы при малых отклонениях от положения устойчивого равновесия. Система дифференциальных уравнений свободных колебаний и её решение. Собственные частоты и формы колебаний (коэффициенты распределения амплитуд). Законы изменения обобщённых координат. Вынужденные колебания под действием одной обобщённой силы. Установившиеся процессы колебаний. Резонансные режимы на двух собст-венных частотах колебаний. Колебания системы с конечным числом	2		4		10	16	

	текущего контроля успеваемости и промежу-точной аттестации
日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	успеваемости и промежу-точной
日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	точной
1 2 3 4 5 6 7 8 9	точной д
1 2 3 4 5 6 7 8 9	
	9 10
orenenen ebooogui.	, 10
Матричная форма	
записи кинетической	
и потенциальной энергии системы.	
Система	
дифференциальных	
уравнений	
свободных колебаний	
диссипативной	
системы в	
матричной форме.	
Случай	
консервативной системы.	
Собственные	
частоты и формы	
как собственные	
числа и собственные	
вектора инерционно- упругой матрицы.	
Выражение решения	
для свободных	
колебаний в виде	
суперпозиции главных колебаний с	
собственными	
частотами.	
	.1
3.2. Анализ динамических	
систем при	
вынужденных	
колебаниях	
Вынужденные колебания	
неконсервативных	
систем.	
Установившийся	
режим. Определение	
частотных характеристик как	
реакций на	
единичное	
комплексное	
гармоническое возмущение. Анализ	
динамических	
свойств системы по	
амплитудным и	
фазовым частотным уарактеристикам	
характеристикам. Определение	
установившихся	

							ги в часах	/	Формы
	G.			В ТОМ	числе инт	ерактивно	ой форме		текущего
No	Семестр	Тема (раздел)							контроля
п/п	ЭМб	учебной							успеваемости и
	ರ	дисциплины				Д		Всего	промежу-
			Ц	Ш	113	KCP	C	Эсе	точной
		2							аттестации
1	2	3	4	5	6	7	8	9	10
		реакций системы с							
		помощью частотных							
	7	характеристик.					10	1.0	THE
6	7	Раздел 4	2		6		10	18	ПК2
		Раздел 2. Малые							
7		колебания систем Тема 2.1							
/		1.1. Основные							
		сведения из							
		геометрической							
		механики,							
		используемые в							
		аналитической							
		механике							
		Принцип Даламбера							
		для систем							
		материальных точек.							
		Задаваемые силы и							
		реакции связей.							
		Идеальные связи.							
		Применение							
		принципа Даламбера							
		для составления							
		дифференциальных							
		уравнений движения							
		в форме							
		геометрических							
		уравнений							
		равновесия.							
		Динамические							
8		реакции связей. Тема 2.2							
0		1.2. Некоторые							
		основные							
		положения							
		аналитической							
		механики							
		Обобщённые							
		координаты.							
		Аналитическое							
		описание связей.							
		Кинема-тические							
		(дифференциальные)							
		и геометрические							
		(конечные) связи.							
		Голономные и							
		неголономные							
		системы.							
		Возможные							
		скорости и							
		возможные							
		мощности. Число							
		степеней свободы.							
		Возможные							
		перемещения.				<u> </u>			

						еятельнос ^х терактивно	ги в часах ой форме	/	Формы текущего
№ п/п	Семестр	Тема (раздел) учебной дисциплины	Л	ЛР	П3	KCP	£	Всего	контроля успеваемости и промежу-точной аттестации
1	2	3	4	5	6	7	8	9	10
		Аналитическое выражение возможной скорости точки несвободной систе-мы. Некоторые дифференциальные принципы: — принцип задаваемых мощностей; — принцип возможных мощностей; — общие уравнения динамики системы; — принцип Журдена (Лагранжа) как необходимое условие обеспечения равновесия системы. Обобщённые силы. Общее уравнение динамики в обобщённых силах. Условия равновесия в обобщённых силах. Условия равновесия инерции с помощью оператора Лагранжа II рода. Определение обобщённых сил для консервативных системах. Применение методов аналитической механики к электромеханическим системам.							
9		Тема 2.3 1.3. Устойчивость равновесия и движения системы Понятие об устойчивости равновесия по Ляпунову. Достаточное условие							

						еятельност	ги в часах	/	Формы текущего
№ п/п	Семестр	Тема (раздел) учебной дисциплины	П	ali di	113	KCP	ги форме	Всего	контроля успеваемости и промежу- точной аттестации
1	2	3	4	5	6	7	8	9	10
		устойчивости равновесия консервативной системы. Теорема Лагранжа — Дирихле. Пример оценки устойчивости равновесия кузова подвижного состава. Понятие об условии устойчивости стационарного движения в малом. Теорема А.М. Ляпунова. Понятие об областях устойчивости как совокупности параметров системы, при которых обеспечивается условие устойчивости.							
10		Тема 4.1 21. Свободные колебания Свободные колебания системы с одной степенью свободы. Консервативная система. Выражения для кинетической и потенциальной энергии при малых отклонениях от положения устойчивого равновесия. Дифференциальное уравнение свободных колебаний консервативной системы. Общий интеграл дифференциального уравнения свободных колебаний. Влияние сил вязкого сопротивления. Определение							

						еятельнос	ти в часах ой форме	/	Формы текущего
№ п/п	Семестр	Тема (раздел) учебной дисциплины	Л	ЛР	П3	KCP	đ	Всего	контроля успеваемости и промежу- точной аттестации
1	2	3	4	5	6	7	8	9	10
		обобщённой диссипативной силы. Дифференциальные уравнения затухающих колебаний и его решение.							
11		Тема 4.2 22. Вынужденные колебания Вынужденные колебания. Случай действия гармонической обобщённой возмущающей силы. Общее решение дифференциального уравнения вынужденных колебаний с учётом сил сопротивления. Установившийся режим. Способы исследования вынужденных колебаний и области их применения. Аналитический способ решения систем дифференциальных уравнений. Исследование вынужденных колебаний с применением ЦВМ, как наиболее универсальный способ. Особенности задания возмущений при решении дифференциальных уравнений на аналоговых и цифровых вычислительных машинах. Интеграл свёртки (Дюамеля), как способ определения реакции системы на произвольное							

							ги в часах	/	Формы
Ma	ďΙζ	Тема (раздел)		B TOM	числе инт	ерактивно	эи форме		текущего контроля
№ п/п	Семестр	учебной							успеваемости и
11, 11	ರ	дисциплины				<u>_</u>		Всего	промежу-
			Ц	Ш	113	KCP	CP	Все	точной аттестации
1	2	3	4	5	6	7	8	9	10
		возмущение по							
		реакциям на							
		типовые единичные							
		возмущения: единичный скачок и							
		единичный импульс.							
		Переходная функция							
		и импульсная							
		(весовая) характеристика, как							
		реакции на							
		единичный скачок и							
		единичный импульс.							
		Примеры их							
		определения для одномассовой							
		модели экипажа, как							
		системы с одной							
		степенью свободы.							
		Операторный способ							
		решения системы дифференциальных							
		уравне-ний. Понятие							
		о преобразованиях							
		Лапласа и							
		передаточной функции.							
		Определение							
		изображения и							
		оригинала реакции.							
		Связь передаточной функции и							
		функции и импульсной							
		характеристики.							
		Частотный способ							
		решения системы							
		дифференциальных уравнений. Понятие							
		о преобразованиях							
		Фурье и частотной							
		характеристике, как							
		реакции на единичное							
		гармоническое							
		возмущение.							
		Вещественная,							
		мнимая, амплитудная (АЧХ)							
		и фазовая (ФЧХ)							
		частотные							
		характеристики.							
		Определение							
		изображения и оригинала реакции.							
		Преимущества							
L	l	ретпущеетьи		l	L	I	I		<u> </u>

			Виды учебной деятельности в часах/ в том числе интерактивной форме						Формы текущего
№ п/п	Семестр	Тема (раздел) учебной дисциплины	Л	JIP	П3	KCP	CP	Всего	контроля успеваемости и промежу- точной аттестации
1	2	3	4	5	6	7	8	9	10
		частотного метода при исследовании установившихся вынужденных колебаний. Матричная форма записи выражений для частотных характеристик и реакций системы при кинематическом и силовом возмущениях. Использование преобразования Фурье для отыскания установившихся вынужденных колебаний линейной динамической системы при гармоническом возмущении. Понятие о спектрах Фурье. Связь частотной характеристики с передаточной функцией и импульсной характеристикой. Резонанс. Импульсная характеристика, передаточная функция и частотная ха-рактеристика, как динамические характеристики с исстемы.						144	
12	<u> </u>	Всего:	16		26		66	144	

4.4. Лабораторные работы / практические занятия

Лабораторные работы учебным планом не предусмотрены.

Практические занятия предусмотрены в объеме 26 ак. ч.

№ п/п	№ семестра	Тема (раздел) учебной дисциплины	Наименование занятий	Всего ча- сов/ из них часов в интерак- тивной форме
1	2	3	4	5
1	7	Раздел 3. Линейные колебания системы с двумя и конечным	3.1 Методы исследования линейных колебаний систем Кинетическая и потенциальная энергия системы с двумя степенями свободы при малых отклонениях от положения устойчивого равновесия. Система дифференциальных уравнений свободных колебаний и её решение. Собственные частоты и формы колебаний (коэффициенты распределения амплитуд). Законы изменения обобщённых координат. Вынужденные колебания под действием одной обобщённой силы. Установившиеся процессы колебаний. Резонансные режимы на двух собст-венных частотах колебаний. Колебания системы с конечным числом степеней свободы. Матричная форма записи кинетической и потенциальной энергии системы. Система дифференциальных уравнений свободных колебаний диссипативной системы в матричной форме. Случай консервативной системы. Собственные частоты и формы как собственные числа и собственные вектора инерционно-упругой матрицы. Выражение решения для свободных колебаний с собственными частотами.	4
2	7		Введение	6
3	7		Раздел 1. Основы аналитической механики	10
4	7		Раздел 2. Малые колебания систем	6
	1	ı	ВСЕГО:	26 / 0

4.5. Примерная тематика курсовых проектов (работ)

Выполняется курсовая работа на тему «Исследование свободных колебаний упрощенных динамических моделей электроподвижного состава»

Работа предусматривает выполнение следующих этапов:

- 7.1. Составление дифференциальных уравнений, описывающих ма-лые колебания заданной упрощенной кинематической модели электроподвижного состава.
- 7.2. Приведение системы дифференциальных уравнений к форме Коши.
- 7.3 Исследование свободных колебаний путем решения на ПЭВМ системы дифференциальных уравнений.
- 7.4. Анализ результатов расчета.
- 7.5. Составление исходной матрицы из коэффициентов системы дифференциальных уравнений и вычисление ее членов для заданного варианта исходных данных.

- 7.6 Расчёты собственных частот и форм свободных колебаний с по-мощью QR-алгоритма.
- 7.7. Исследование свободных колебаний путем выражения решения в виде суперпозиции главных колебаний с их собственными частотами.
- 7.8. Анализ результатов расчета.
- 7.9. Выводы.
- 7.10. Список литературы.

Наряду с объяснениями преподавателя на консультациях, основными методическими указаниями являются: Бурчак Г.П., Поляков А.И., Савоськин А.Н., Сердобинцев Е.В. и Васильев А.П. Методические указания и задания для курсовой работы по дисциплине «Динамика систем». «Составление дифференциальных уравнений малых колебаний упрощенных моделей электроподвижного состава и исследования их свободных колебания», Бурчак Г.П., Савоськин А.Н. Методические указания и задания для самостоятельной работы «Колебания рельсовых экипажей», часть ІІ. «Свободные колебания», Бурчак Г.П., Савоськин А.Н. Методические указания и задания для самостоятельной работы «Колебания рельсовых экипажей», часть ІІІ. «Вынужденные колебания» и Винник Л.В., Савоськин А.Н., Сердобинцев Е.В. «Колебания рельсовых экипажей», часть ІV. Методические указания для самостоятельной работы.

7.2 Контрольные работыНе предусмотрены.7.3 РефератыНе предусмотрены

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Темы и объем самостоятельной работы студентов варьируются преподавателем в зависимости от уровня усвоения ими лекционного материала и выдаются в виде домашних заданий для закрепления ма-териала, освоенного на практических занятиях. Выполненные студентом домашние задания, расчеты и анализ их ре-зультатов контролируются преподавателем и учитываются при промежуточных контролях.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

№ п/п	№ семестра	Тема (раздел) учебной дисциплины	Вид самостоятельной работы студента. Перечень учебно-методического обеспечения для самостоятельной работы	Всего часов
1	2	3	4	5
1	7	Раздел 3. Линейные колебания системы с двумя и конечным	3.1 Методы исследования линейных колебаний систем Кинетическая и потенциальная энергия системы с двумя степенями свободы при малых отклонениях от положения устойчивого равновесия. Система дифференциальных уравнений свободных колебаний и её решение. Собственные частоты и формы колебаний (коэффициенты распределения амплитуд). Законы изменения обобщённых координат. Вынужденные колебания под действием одной обобщённой силы. Установившиеся процессы колебаний. Резонансные режимы на двух собст-венных частотах колебаний. Колебания системы с конечным числом степеней свободы. Матричная форма записи кинетической и потенциальной энергии системы. Система дифференциальных уравнений свободных колебаний диссипативной системы в матричной форме. Случай консервативной системы. Собственные частоты и формы как собственные числа и собственные вектора инерционно-упругой матрицы. Выражение решения для свободных колебаний в виде суперпозиции главных колебаний с собственными частотами.	10
3	7	Раздел 3. Линейные колебания системы с двумя и конечным	3.2. Анализ динамических систем при вынужденных колебаниях Вынужденные колебания неконсервативных систем. Установившийся режим. Определение частотных характеристик как реакций на единичное комплексное гармоническое возмущение. Анализ динамических свойств системы по амплитудным и фазовым частотным характеристикам. Определение установившихся реакций системы с помощью частотных характеристик. Введение	11
4	7		Раздел 1. Основы аналитической механики	20
5	7		Раздел 2. Малые колебания систем	10
	1		ВСЕГО:	66

7. ПЕРЕЧЕНЬ ОСНОВНОЙ И ДОПОЛНИТЕЛЬНОЙ ЛИТЕРАТУРЫ, НЕОБХОДИМОЙ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

7.1. Основная литература

№ п/п	Наименование	Автор (ы)	Год и место издания Место доступа	Используется при изучении разделов, номера страниц
1	Краткий курс теоретической механики	С.М. Тарг	Высш. шк., 1995 НТБ (уч.1); НТБ (уч.3); НТБ (уч.6); НТБ (фб.); НТБ (чз.1); НТБ (чз.2)	Все разделы
2	Механическая часть тягового подвижного состава	И.В. Бирюков; А.Н. Савоськин; Г.П. Бурчак; Под ред. И.В. Бирюкова	Транспорт, 1992 НТБ (уч.3); НТБ (уч.6); НТБ (фб.)	Все разделы

7.2. Дополнительная литература

№ п/п	Наименование	Автор (ы)	Год и место издания Место доступа	Используется при изучении разделов, номера страниц
3	Курс теоретической механики	Л.Г. Лойцянский, А.И.	Гос. изд-во технико-	Все разделы
		Лурье	теоретической лит.,	
			1955	
			НТБ (фб.)	
4	Теоретическая механика	А.П. Маркеев	Наука. Гл. ред. физ	Все разделы
			мат. лит., 1990	<u>*</u>
			НТБ (фб.)	

8. ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ "ИНТЕРНЕТ", НЕОБХОДИМЫЕ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

Для проведения практических занятий и выполнения курсовой работы необходимо иметь комплекс программ для ПЭВМ или пакеты «Mathcad» и «Matlab», обеспечивающие возможность выполнения следующих вычислений:

9. ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ, ИСПОЛЬЗУЕМЫХ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Для проведения практических занятий и выполнения курсовой работы необходимо иметь комплекс программ для ПЭВМ или пакеты «Mathcad» и «Matlab», обеспечивающие возможность выполнения следующих вычислений:

10. ОПИСАНИЕ МАТЕРИАЛЬНО ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Для проведения практических занятий и выполнения курсовой работы необходимо иметь комплекс программ для ПЭВМ или пакеты «Mathcad» и «Matlab», обеспечивающие возможность выполнения следующих вычислений:

- 1. Определение собственных значений и собственных векторов мат-риц с комплексными коэффициентами с помощью QR- алгоритма.
- 2. Расчёт свободных и вынужденных детерминированных и случайных колебаний и

показателей динамических качеств линейных и нелинейных упрощенных моделей электроподвижного состава во вре-менной области.

3. Расчёт амплитудных и фазовых частотных характеристик, а также исследование в частотной области вынужденных случайных колебаний и определение показателей динамических качеств различных линейных моделей электроподвижного состава.

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

При изучении дисциплины «Аналитическая механика» студентам ре-комендуется систематическая работа над материалом, пройденным на лекциях, при подготовке к практическим занятиям, к выполнению разделов курсовой работы и самостоятельной работы. При появлении неясных вопросов при подготовке к практическим занятиям и выполнению самостоятельной работы необходимо изучить соответствующие разделы основной и дополнительной литературы. При изучении разделов 1,2 и 3 лекционного курса основной литературой является учебник 2 из списка основной литературы и методические указания 3,4 из того же списка, а также учебники 1-5 из списка дополнительной литературы.

11. Методические рекомендации для преподавателей

Дисциплина «Аналитическая механика» ввиду большого объема этой дисциплины и его разнородности является, как свидетельствует опыт, достаточно сложной для усвоения студентами. Поэтому расчеты, являющиеся заключительным этапом практических занятий, курсовой и самостоятельной работ, выполняются студентом на ПЭВМ совместно с преподавателем. К результатам расчетов преподаватель должен давать студенту пояснения таким образом, чтобы этим продолжить процесс освоения студентом разделов дисциплины, относящихся к практическим занятиям, курсовой и самостоятельной работам.

При чтении лекций, для повышения уровня восприятия студентами излагаемого материала необходимо в начале каждой лекции конспективно повторять материал, изложенный в предыдущей лекции.

Основой организации учебной деятельности студента по освоению дисциплины «Аналитическая механика» должна являться его систематиче-ская работа над изученным лекционным материалом при подготовке к практическим занятиям и при выполнении курсовой работы.