МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 13.03.02 Электроэнергетика и электротехника, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Аналитическая механика

Направление подготовки: 13.03.02 Электроэнергетика и электротехника

Направленность (профиль): Электрический транспорт

Форма обучения: Очно-заочная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 5214

Подписал: заведующий кафедрой Пудовиков Олег

Евгеньевич

Дата: 24.01.2022

1. Общие сведения о дисциплине (модуле).

Цель преподавания дисциплины — изложение некоторых методов аналитической механики, применяемых для исследования динамики достаточно сложных систем, представляющих собой модели реальных конструкций подвижного состава железных дорог.

Задачи дисциплины:

- студент должен приобрести навыки выбора наиболее подходящего метода решения конкретных задач по исследованию движения сложных систем;
- студент должен приобрести навыки разработки кинематических схем моделей электроподвижного состава (ЭПС);
- уметь определить число степеней свободы и создать математическую модель ЭПС путем составления систем дифференциальных уравнений;
- -уметь составлять и решать уравнения движения всех видов подвижного состава;
- -овладеть методами исследования свободных и вынужденных колебаний моделей ЭПС;
- -иметь опыт анализа результатов исследований и выбора на основании этого анализа необходимых параметров рессорного подвешивания;
- -приобретение студентами навыков самостоятельной работы с научнотехнической литературой по исследованию динамики ЭПС.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ПК-2 - Способен проводить экспертизу и разрабатывать проекты узлов и устройств, технологических процессов производства и эксплуатации, технического обслуживания и ремонта тягового подвижного состава.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

Порядок проведения экспертизы и порядок разработки проектов узлов и устройств, технологических процессов производства и эксплуатации, технического обслуживания и ремонта тягового подвижного состава

Владеть:

Технологиями проектирования и моделирования узлов и устройств

подвижного состава, соответствующих современным достижениям науки и техники, в том числе с применением информационных технологий и пакетов прикладных программ

- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 4 з.е. (144 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

		Количество	
Тип учебных занятий	часов		
	Всего	Сем.	
		№7	
Контактная работа при проведении учебных занятий (всего):	32	32	
В том числе:			
Занятия лекционного типа	16	16	
Занятия семинарского типа	16	16	

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 112 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

№	Тематика лекционных занятий / краткое содержание			
п/п	темитики пекционных запятин / криткое содержиние			
1	Основы аналитической механики			
	Рассматриваемые вопросы:			
	- основные понятия;			
	- некоторые основные положения аналитической механики;			
	- обобщённые координаты;			
	- аналитическое описание связей;			
	- кинематические (дифференциальные) и геометрические (конечные) связи;			
	- возможные скорости и возможные мощности.			
2	Устойчивость равновесия и движения системы			
	Рассматриваемые вопросы:			
	- понятие об устойчивости равновесия по Ляпунову;			
	- достаточное условие устойчивости равновесия консервативной системы;			
	- теорема Лагранжа — Дирихле;			
	- пример оценки устойчивости равновесия кузова подвижного состава;			
	- понятие об условии устойчивости стационарного движения в малом;			
	- теорема А.М. Ляпунова.			
3	Анализ динамических систем при вынужденных колебаниях			
	Рассматриваемые вопросы:			
	- вынужденные колебания неконсервативных систем;			
	- установившийся режим;			
	- определение частотных характеристик как реакций на единичное комплексное гармоническое			
	возмущение.			
4	Свободные колебания			
	Свободные колебания			
	Рассматриваемые вопросы:			
	- свободные колебания системы с одной степенью свободы;			
	- консервативная система;			
	- выражения для кинетической и потенциальной энергии при малых отклонениях от положения			
	устойчивого равновесия;			
	- дифференциальное уравнение свободных колебаний консервативной системы;			
	- общий интеграл дифференциального уравнения свободных колебаний.			

4.2. Занятия семинарского типа.

Практические занятия

№ п/п	Тематика практических занятий/краткое содержание			
1	Основы аналиической механики			
	Рассматриваемые вопросы:			
	- Виды колебаний			
2	Основные сведения из геометрической механики, используемые в аналитической			
	механике			
	Рассматриваемые вопросы:			
	- Принцип Даламбера для систем материальных точек. Задаваемые силы и реакции связей. Идеальные			
	связи. Применение принципа Даламбера для составления дифференциальных уравнений движения в			
	форме геометрических уравнений равновесия. Динамические реакции связей.			
3	Методы исследования линейных колебаний систем			
	Рассматриваемые вопросы:			

№	Тематика практических занятий/краткое содержание				
п/п					
	- Кинетическая и потенциальная энергия системы с двумя степенями свободы при малых отклонениях				
	от положения устойчивого равновесия. Система дифференциальных уравнений свободных колебаний				
	и её решение. Собственные частоты и формы колебаний (коэффициенты распределения амплитуд).				
	Законы изменения обобщённых координат.				
4	Вынужденные колебания под действием одной обобщённой силы				
	Рассматриваемые вопросы:				
	- Установившиеся процессы колебаний. Резонансные режимы на двух собственных частотах				
	колебаний. Колебания системы с конечным числом степеней свободы. Матричная форма записи				
	кинетической и потенциальной энергии системы. Система дифференциальных уравнений свободных				
	колебаний диссипативной системы в матричной форме.				
5	Подвижной двухосного состава с одноступенчатым рессорным подвешиванием				
	Рассматриваемые вопросы:				
	- уравнения колебаний				
6	Подвижной состава с двумя ступенями рессорного подвешивания				
	Рассматриваемые вопросы:				
	- Уравнения колебаний при движении по абсолютно жесткому пути.				

4.3. Самостоятельная работа обучающихся.

№ π/π	Вид самостоятельной работы
1	Подготовка к промежуточному контролю
2	Выполнение курсовой работы.
3	Подготовка к промежуточной аттестации.
4	Подготовка к текущему контролю.

4.4. Примерный перечень тем курсовых работ

Исследование свободных колебаний упрощенных динамических моделей электроподвижного состава

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Краткий курс теоретической механики С.М. Тарг	НТБ (уч.6)
	Однотомное издание Высш. шк., 2007	
2	Механическая часть тягового подвижного состава И.В.	НТБ (уч.3); НТБ (уч.6);
	Бирюков; А.Н. Савоськин; Г.П. Бурчак; Под ред. И.В.	НТБ (фб.)
	Бирюкова Однотомное издание Транспорт, 1992	
3	Теоретическая механика А.П. Маркеев Однотомное	НТБ (фб.)
	издание Наука. Гл. ред. физмат. лит. , 1990	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Информационный портал Научная электронная библиотека eLIBRARY.RU (www.elibrary.ru)

Единая коллекция цифровых образовательных ресурсов (http://window.edu.ru)

Научно-техническая библиотека РУТ (МИИТ) (http://library.miit.ru)

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Для проведения практических занятий и выполнения курсовой работы необходимо иметь комплекс программ для ПЭВМ и пакеты «Mathcad» и «Matlab»

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Лекционная аудитория

9. Форма промежуточной аттестации:

Курсовая работа в 7 семестре.

Экзамен в 7 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, доцент, к.н. кафедры «Электропоезда и локомотивы»

В.Н. Ротанов

Согласовано:

Заведующий кафедрой ЭиЛ

О.Е. Пудовиков

С.В. Володин

Председатель учебно-методической

комиссии