МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 01.03.02 Прикладная математика и информатика, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Вариационное исчисление и элементы функционального анализа

Направление подготовки: 01.03.02 Прикладная математика и

информатика

Направленность (профиль): Математическое моделирование и системный

анализ

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 5665

Подписал: заведующий кафедрой Нутович Вероника

Евгеньевна

Дата: 03.04.2025

1. Общие сведения о дисциплине (модуле).

Целью освоения дисциплины (модуля) является:

- получение знаний, приобретение навыков решения задач функционального анализа, необходимых для практического применения методов и моделей функционального анализа в исследовательской и профессиональной длеятельности.
- формирование умений и навыков, необходимых для практического применения методов классического вариационного исчисления для поиска решений в оптимальных задачах.

Задачами освоения дисциплины (модуля) являются:

- освоение приемов решения типовых задач функционального анализа;
- формирование умения строить теоретические и прикладные модели, анализировать и содержательно интерпретировать полученные результаты;
- формирование у обучающегося компетенций в области применения методов вариационного исчисления для проектной и научно-исследовательской деятельности;
- обучение студента применению основных понятий и задач классического вариационного исчисления;
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ПК-4 - Уметь ставить цели создания системы, разрабатывать концепцию системы и требования к ней, выполнять декомпозицию требований к системе.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- основные свойства функциональных пространств,
- свойства линейных функционалов и линейных операторов.
- основные теоремы и формулы вариационного исчисления.

Уметь:

- использовать понятия и концепции функционального анализа;
- логически выстраивать обоснование основных теоретических результатов, анализировать и оценивать различные методы решения задач;
- решать прикладные задачи с использованием методов функционального анализа.

- анализировать условия задач, возникающих в вариационном исчислении, и применять соответствующий метод для их решения, включая системный подход

Владеть:

- навыками анализа свойств объектов функционального анализа, применяемых в прикладных задачах;
- навыками решения задач вычислительного и теоретического характера в области функционального анализа.
- навыками решения типовых задач, возникающих в вариационном исчислении.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 4 з.е. (144 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
тип учесных занятии		Семестр №6
Контактная работа при проведении учебных занятий (всего):	80	80
В том числе:		
Занятия лекционного типа	32	32
Занятия семинарского типа	48	48

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 64 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.

4. Содержание дисциплины (модуля).

4.1. Занятия лекционного типа.

No				
п/п	Тематика лекционных занятий / краткое содержание			
1	Понятие метрического пространства.			
1	Рассматриваемые вопросы:			
	- определение;			
	- примеры классических метрических пространств и метрик в них.			
2	Сходимость в метрических пространствах			
_	Рассматриваемые вопросы:			
	- понятие об открытых и замкнутых шарах в метрическом пространстве;			
	- понятие предела в метрическом пространстве;			
	- теорема о вложенных шарах и принцип сжимающих отображений.			
3	Применения принципа сжимающих отображений (ПСО)			
	Рассматриваемые вопросы:			
	- решение алгебраического уравнения при помощи ПСО;			
	- решение систем алгебраических уравнений на основе ПСО;			
	- решение дифференциальных уравнений при помощи ПСО.			
4	Понятие нормированного пространства. Понятие евклидова пространства			
	Рассматриваемые вопросы:			
	- определение;			
	- примеры классических нормированных пространств и норм в них;			
	- примеры классических евклидовых пространств и скалярных произведений в них.			
	- понятие подпространства.			
5	Основные теоремы об евклидовых пространствах			
	Рассматриваемые вопросы:			
	- теорема об ортогонализации;			
	- неравенство Бесселя и ортонормированные системы;			
	- характеристическое свойство евклидовых пространств.			
6	Функционалы в нормированных пространствах. Операторы в нормированных			
	пространствах			
	Рассматриваемые вопросы:			
	- функционал и его норма, примеры функционалов;			
	- понятие о сопряженном пространстве;			
	- линейные операторы, ядро и образ оператора, примеры;			
	- обратные операторы и теорема о существовании обратного;			
	- спектр оператора, теорема о спектре.			
	- теорема Рисса о представлении линейного функционала.			
7	Условный экстремум функции нескольких переменных (ФНП)			
	Рассматриваемые вопросы:			
	- задачи, приводящие к исследованию на условный экстремум;			
	- условный экстремум ФНП. Множители Лагранжа;			
	- достаточное условие условного экстремума.			
8	Задачи с неравенствами			
	Рассматриваемые вопросы:			
	- примеры, приводящие к задачам с неравенствами;			

No				
п/п	Тематика лекционных занятий / краткое содержание			
11/11				
	- необходимое условие экстремума в задачах с неравенствами; - теорема Вейерштраса о достижении функцией наибольшего и наименьшего значения в обла			
9				
9	Дифференцирование в нормированных пространствах			
	Рассматриваемые вопросы:			
	- дифференцируемый функционал, производная по Гато, Фреше и Лагранжу в нормированных			
	пространствах;			
	- основные свойства производной по Фреше; - вариация по Лагранжу и ее основные свойства.			
10				
10	Простейшая задача вариационного исчисления Рассматриваемые вопросы:			
	- история и постановка задачи о брахистохроне; - сильный и слабый минимум;			
	- сильный и слаоый минимум, - необходимое условие экстремума (уравнение Эйлера-Лагранжа);			
	- примеры простейших задач вариационного исчисления.			
11	Первые интегралы уравнения Эйлера-Лагранжа			
11	Рассматриваемые вопросы:			
	- случаи понижения порядка уравнения Эйлера-Лагранжа;			
	- случаи понижения порядка уравнения Эилера-Лагранжа; - решение задачи о брахистохроне;			
	- постановка и решение задачи геометрической оптики;			
	- постановка и решение задачи о наименьшей поверхности вращения.			
12	Достаточные условия слабого минимума в простейшей задаче вариационного			
	исчисления			
	Рассматриваемые вопросы: - вторая вариация функционала;			
	- условие и усиленное условие Лежандра;			
	уравнение Якоби и его анализ;			
	- условие и усиленное условие Якоби;			
	- проверка экстремалей на экстремальность в классических задачах.			
13	Обобщения простейшей задачи вариационного исчисления			
	Рассматриваемые вопросы:			
	– задача Больца и условия трансверсальности;			
	- основная задача вариационного исчисления для функций многих переменных;			
	- уравнение Эйлера-Пуассона для задачи со старшими производными.			
14	Достаточные условия слабого минимума в обобщениях простейшей задачи			
	вариационного исчисления			
	Рассматриваемые вопросы:			
	- достаточные и необходимые условия слабого минимума в задаче Больца;			
	- условия экстремума второго порядка в задачах со старшими производными.			
15	Задачи с подвижными границами			
	Рассматриваемые вопросы:			
	- постановка простейшей задачи со свободными границами, условия трансверсальности и			
	стационарности;			
	- задача Лагранжа на множестве функций со свободными границами.			
16	Изопериметрические задачи			
	Рассматриваемые вопросы:			
	- алгоритм решения изопериметрических задач. Метод множителей Лагранжа;			
	- задача Дидоны о кривой, окружающей наибольшую площадь;			
	- задача о форме кривой, провисающей под действием силы тяжести.			

4.2. Занятия семинарского типа.

Практические занятия

	практические занятия		
№ п/п	Тематика практических занятий/краткое содержание		
1	Понятие метрического пространства		
	В результате работы на практических занятиях студент учится анализировать функции и искать		
	расстояние между функциями в метрических пространствах.		
2	Сходимость в метрических пространствах		
	В результате работы на практических занятиях студент учится анализировать сходимость		
	последовательности функций в метрических пространствах, искать её предел и применять принцип		
	сжимающих отображений.		
3	Применения принципа сжимающих отображений (ПСО)		
	В результате работы на практических занятиях студент учится решать конкретные уравнения и		
	системы алгебраических уравнений, дифференциальные уравнения с применением ПСО.		
4	Понятие нормированного пространства		
	В результате работы на практических занятиях студент учится анализировать функции и искать		
	норму между функциями в различных нормированных пространствах.		
5	Понятие евклидова пространства		
	В результате работы на практических занятиях студент учится анализировать функции и искать скалярное произведение между функциями в различных евклидовых пространствах.		
6	Основные теоремы об евклидовых пространствах		
0	В результате работы на практических занятиях студент учится ортогонализовать системы функций,		
	применять неравенство Бесселя и		
	характеристическое свойство евклидовых пространств.		
7	Функционалы в нормированных пространствах		
	В результате работы на практических занятиях студент учится находить нормы различных		
	функционалов в нормированных пространствах.		
8	Операторы в нормированных пространствах		
	В результате работы на практических занятиях студент учится находить нормы различных		
	операторов в нормированных пространствах, искать их спектр и классифицировать его точки.		
9	Условный экстремум ФНП		
	В результате работы на практических занятиях студент получает навыки нахождения условного		
	экстремума ФНП, проверки достаточного условия экстремума.		
10	Задачи с равенствами		
	В результате работы на практических занятиях студент получает навыки нахождения экстремума		
1.1	ФНП для случая ограничений в виде равенств.		
11	Дифференцирование в нормированных пространствах		
	В результате работы на практических занятиях студент получает навыки вычисления производных		
12	функционалов и поиска точек недифференцируемости.		
12	Простейшая задача вариационного исчисления		
	В результате работы на практических занятиях студент получает навыки решения простейшие задачи вариационного исчисления с помощью уравнения Эйлера-Лагранжа, проверки того, является		
	ли найденная экстремаль слабым минимумом.		
13	Первые интегралы уравнения Эйлера-Лагранжа		
15	В результате работы на практических занятиях студент получает навыки решения простейших		
	задачи вариационного исчисления при помощи первых интегралов.		
14	Достаточные условия слабого минимума в простейшей задаче вариационного		
	исчисления		
	В результате работы на практических занятиях студент получает навыки проверки экстремали		
	1) - F		

№ п/п	Тематика практических занятий/краткое содержание		
	простейшей задачи вариационного исчисления на слабый минимум, записи и анализа условий Лежандра и Якоби.		
15	Обобщения основной задачи вариационного исчисления		
	В результате работы на практических занятиях студент получает навыки записи условий трансверсальности и решения задачу Больца, решения системы уравнений Эйлера-Лагранжа в		
	основной задаче для функций нескольких переменных, решения уравнения Эйлера-Пуассона для задачи		
	со старшими производными, проверки, является ли найденная экстремаль слабым минимумом.		
16	6 Достаточные условия слабого минимума в обобщениях простейшей задачи		
	вариационного исчисления		
	В результате работы на практических занятиях студент получает навыки проверки экстремали задач		
	Больца и задач со старшими производными на слабый минимум.		
17	Задачи с подвижными границами		
	В результате работы на практических занятиях студент получает навыки		
	решения простейшей задачи со свободными границами, проверки условий трансверсальности и		
	стационарности, решения задачи Лагранжа на множестве функций со свободными границами.		
18	Изопериметрические задачи		
	В результате работы на практических занятиях студент получает навыки решения заданных		
	изопериметрических задач, проверки, является ли найденная экстремаль слабым минимумом.		

4.3. Самостоятельная работа обучающихся.

No	Рид ормостоятон ной роботи	
п/п	Вид самостоятельной работы	
1	Самостоятельное изучение лекционного материала.	
2	Изучение учебной литературы из приведённых источников.	
3	Подготовка к практическим занятиям.	
4	Выполнение курсовой работы.	
5	Подготовка к промежуточной аттестации.	
6	Подготовка к текущему контролю.	

4.4. Примерный перечень тем курсовых работ

Линейные нормированные и банаховы пространства. Теорема Хана-Банаха.

Линейные нормированные и банаховы пространства. Теоремы о разделении.

Инвариантность уравнения Эйлера относительно замены переменной.

Каноническая форма уравнений Эйлера.

Нахождение экстремалей функционала через уравнение Гамильтона-Якоби.

Вариационные принципы механики. Принцип наименьшего действия в простейшей задаче.

Достаточные условия сильного минимума. Функция Вейерштраса.

Нахождение ломаных экстремалей. Условия Вейерштраса-Эрдмана.

Вариационные методы нахождения собственных значений.

Вариационные методы нахождения собственных функций.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Курс вариационного исчисления Гюнтер, Н. М. Учебное пособие Санкт-Петербург: Лань; — 320 с. — 2022. ISBN 978-5-8114-0893-1	https://e.lanbook.com/book/210236 (дата обращения: 08.04.2025).
2	Бренерман, М. Х. Вариационное исчисление: учебное пособие / М. Х. Бренерман, В. А. Жихарев. — Казань: КНИТУ, 2017. — 148 с. — ISBN 978-5-7882-2198-4. — Текст: электронный // Лань: электронно-библиотечная система.	https://e.lanbook.com/book/138281 (дата обращения: 08.04.2025)
3	Некрасов, С. А., Теория оптимального управления : учебник / С. А. Некрасов. — Москва : Русайнс, 2024. — 205 с. — ISBN 978-5-466-07008-8.	https://book.ru/book/954233 (дата обращения: 08.04.2025).
4	Власова, Е. А. Элементы функционального анализа: учебное пособие / Е. А. Власова, И. К. Марчевский. — Санкт-Петербург: Лань, 2022. — 400 с. — ISBN 978-5-8114-1958-6. — Текст: электронный	https://e.lanbook.com/book/212189 (дата обращения: 08.04.2025).
5	Люстерник, Л. А. Краткий курс функционального анализа: учебное пособие / Л. А. Люстерник, В. И. Соболев. — 2-е изд. стер. — Санкт-Петербург: Лань, 2022. — 272 с. — ISBN 978-5-8114-0976-1. — Текст: электронный	https://e.lanbook.com/book/210290 (дата обращения: 08.04.2025)
6	Павлов, Е. А. Основы функционального анализа: учебное пособие / Е. А. Павлов. — 2-е изд., стер. — Санкт-Петербург: Лань, 2020. — 88 с. — ISBN 978-5-8114-3635-4.— Текст: электронный	https://e.lanbook.com/book/116362 (дата обращения: 08.04.2025)

- 6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).
 - Научно-техническая библиотека РУТ (МИИТ) (http://library.miit.ru);

- Информационный портал Научная электронная библиотека eLIBRARY.RU (www.elibrary.ru);
 - Образовательная платформа «Юрайт» (https://urait.ru/);
- Электронно-библиотечная система издательства «Лань» (http://e.lanbook.com/);
- Интернет-университет информационных технологий (http://www.intuit.ru/).
- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).
 - Операционная система Windows;
 - Microsoft Office;
 - MS Teams;
 - Поисковые системы.
- 8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Для проведения занятий лекционного типа требуются аудитории, оснащенные компьютерной техникой и наборами демонстрационного оборудования.

Для практических занятий – наличие персональных компьютеров.

9. Форма промежуточной аттестации:

Зачет в 6 семестре.

Курсовая работа в 6 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, доцент, к.н. кафедры «Цифровые технологии управления транспортными процессами»

А.П. Иванова

Согласовано:

Заведующий кафедрой ЦТУТП

В.Е. Нутович

Председатель учебно-методической

комиссии Н.А. Андриянова