МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы специалитета по специальности 23.05.03 Подвижной состав железных дорог, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Взаимодействие высокоскоростного подвижного состава с инфраструктурой

Специальность: 23.05.03 Подвижной состав железных дорог

Специализация: Высокоскоростной наземный транспорт

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 5214

Подписал: заведующий кафедрой Пудовиков Олег

Евгеньевич

Дата: 03.05.2025

1. Общие сведения о дисциплине (модуле).

Целями освоения учебной дисциплины "Взаимодействие высокоскоростного подвижного состава с инфраструктурой" являются:

- сформировать у обучающихся представление о выборе рациональных форм головной и хвостовой частей поезда по критерию снижения сопротивления движению;
- сформировать у обучающихся представление о выбор форм поверхностей железнодорождных экипажей;
- изучить влияние обтекания воздухом на работу подвогонного оборудования.

Задачей освоения учебной дисциплины "Взаимодействие высокоскоростного подвижного состава с инфраструктурой" является:

- освоение принципов конструирования подвижного состава железных дорог с учётом аэродинамических явлений.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ПК-9 - Имеет навык выполнять обоснование параметров конструкции конструкций и систем подвижного состава высокоскоростного наземного транспорта.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

основные требования к конструкции высокоскоростного подвижного состава с точки зрения аэродинамики;

Уметь:

разрабатывать мероприятия по улучшению взаимодействия подвижного состава и его элементов с окружающей средовй в процессе движения

Владеть:

Основными методами оценки взаимодействия высокоскоростного подвижного состава и окружающей среды

- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 3 з.е. (108 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
тип учесных занятии		Семестр №9
Контактная работа при проведении учебных занятий (всего):	48	48
В том числе:		
Занятия лекционного типа	16	16
Занятия семинарского типа	32	32

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 60 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

№ п/п	Тематика лекционных занятий / краткое содержание		
1	Анализ исторического развития приёмов и способов учёта воздействия воздушной		
	среды на железнодорожный подвижной состав		
	Аэродинамика железнодорожного поезда, основные направления исследования. Особенности		
	железнодорожного поезда как объекта исследования. Методика экспериментального исследования		
	аэродинамики поезда, расчётные методы исследования.		
2	Некоторые сведения из аэродинамики		
	Основные понятия и допущения гидродинамики. Принцип обращения движения. Физическая природа		
	жидкости и газа. Параметры и размерности величин, характеризующих состояние жидкости и газа.		
	Внутреннее трение и вязкость жидкости и газа.		

$N_{\underline{0}}$	Тематика лекционных занятий / краткое содержание			
п/п	темитики лекционных запитии / криткое содержиние			
	Методы исследования движения жидкости и газа. Метод Лагранжа. Метод Эйлера. Стационарное и			
	нестационарное движение. Линия, дифференциальное уравнение линии тока. Трубка тока. Уравнение			
	неразрывности. Разложение скорости жидкого элемента. Уравнение Бернулли. Потенциальное и			
	вихревое течение. Вихрь, вихревой шнур.			
	Режимы течения жидкости. Коэффициенты подобия при исследовании течения вязкой жидкости			
	(Числа Рейнольдса, Струхаря, Фруда).			
3	Обощённая характеристика подвижного состава с учётом взаимодействия на него			
	воздушной среды			
	Внешняя аэродинамика подвижного состава. Внутренняя аэродинамика. Аэродинамика подвагонного			
	пространства. Аэродинамика пассажирских и грузовых помещений подвижного состава			
4	Теоретическое обоснование и разработка общей методологии учёта			
	аэродинамических процессов при создании железнодорожного подвижного состава			
	Создание системы многоуровневых обощённых информационных моделей взаиможействия			
	подвижного состава и воздушной среды. Комплекс критериальных отношений для практической			
	оценки воздействия воздушной среды на подвижной состав			
	Выбор рациональной формы подвижного состав			
	Критерии выбора формы, оптимизация формы головной части			
5	Взаимодействие подвижного состава и искусственных сооружений			
	Влияние формы подвижного состава на условия движения и обустройства железных дорог			
	Особенности взаимодействия подвижного состава, пути и искусственных сооружений			
	Взаимодействие подвижного состава при скрещивании поездов			
	Взаимодействие подвижного состава и искусственных сооружений			

4.2. Занятия семинарского типа.

Лабораторные работы

№	Наименование лабораторных работ / краткое содержание				
п/п					
1	Знакомство с пакетом SolidWorks Flow Simulation				
	Закомомство с программной средой FlowSimulation. Настройка пакета для исследования задачи				
	внешнего обтекания тела, выполнение пробных расчётов, отображение и интерпретация результатов				
2	Исследования влияния формы тела на величину аэродинамического сопротивления				
	Создание твердотельных моделей тел различной геометрической формы. Решение внешней задачи				
	исследования течения. Определение сил, действующих на тело при различных скоростях потока.				
	Синтез формы тела, обеспечивающей минимальное аэродинамическое сопротивление. Анализ				
	влиянияе формы тела на величинуаэродинамического сопротивлния				
3	Оценка влияния удлинения тела приямоугольного сечения на составляющие				
	лобового сопротивления и сопротивления трения				
	Определение составляющих аэродинамического сопротивления, действующих на тела с различным				
	соотношением удлинения и миделя.				
4	Исследование обтекания тела, расположенного вблизи экрана				
	Исследование течения вокруг тел, расположенных вблизи экрана. Определение составляющих				
	аэродинамического сопротивления, действующих на тела с различным соотношением удлинения и				
	миделя. Сравнение полученных результатов с результатами, полученными для случая свободного				
	обтекания тела				
5	Исследование внутреннего течения жидкости или газа				
	Постановка задачи для исследования внутреннего течения. Конфигурация программного пакета для				
	исследования внутреннего течения. Исследование течения в трубке переменного сечения.				

№ п/п	Наименование лабораторных работ / краткое содержание		
	Определение эпюр распредделения скоростей внутри трубки в различных сечениях. Проверка		
	выполнения условия неразрывности и закона сохранения массы.		
6	Исследование нестационарного обтекания тела		
	Исследование течения в двумерной и трёхмерной постановке. Исследование обтекания цилиндра		
	потоком различной скорости. Исследование вихревой дорожки Кармана.		
7	Исследование нестационарного течения в замкнутом объёме		
	Исследование распределения поля скоростей и температур потока внутри замкнутого объёма при		
	наличии одногои или нескольких истоков и стоков.		

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	Работа с лекционным материалом
2	Работа с литературой
3	Выполнение курсовой работы.
4	Подготовка к промежуточной аттестации.
5	Подготовка к текущему контролю.

4.4. Примерный перечень тем курсовых работ

Расчёт обтекания поезда в соотвествии с заданием (высокоскоростного, пассажирского, грузового). Определение влияния ветровой нагрузки, элементов плана и профиля пути на аэродинамические параметры поезда.

Варианты заданий.

- 1. Моторвагонный подвижной состав. Количество осей локомотива 4. Количество вагонов в поезде 5. Тип вагонов -. Скорость поезда, м/с 30. Скорость ветрового потока, м/с 25. Угол между векторами воздушного потока и ветровой нагрузкой 120. Высота насыпи 3. Глубина выемки -5.
- 2. Пассажирский поезд с локомотивной тягой. Количество осей локомотива 8. Количество вагонов в поезде 4. Тип вагонов -. Скорость поезда, м/с 80. Скорость ветрового потока, м/с 30. Угол между векторами воздушного потока и ветровой нагрузкой 60. Высота насыпи 2. Глубина выемки -1.
- 3. Грузовой поезд с локомотивной тягой. Количество осей локомотива 6. Количество вагонов в поезде - 6. Тип вагонов - полувагон. Скорость поезда,

- м/с 60. Скорость ветрового потока, м/с 15. Угол между векторами воздушного потока и ветровой нагрузкой 105. Высота насыпи 2. Глубина выемки -5.
- 4. Моторвагонный подвижной состав. Количество осей локомотива 6. Количество вагонов в поезде 6. Тип вагонов -. Скорость поезда, м/с 90. Скорость ветрового потока, м/с 10. Угол между векторами воздушного потока и ветровой нагрузкой 15. Высота насыпи 10. Глубина выемки -2.
- 5. Пассажирский поезд с локомотивной тягой. Количество осей локомотива 6. Количество вагонов в поезде 5. Тип вагонов -. Скорость поезда, м/с 50. Скорость ветрового потока, м/с 25. Угол между векторами воздушного потока и ветровой нагрузкой 45. Высота насыпи 8. Глубина выемки -2.
- 6. Грузовой поезд с локомотивной тягой. Количество осей локомотива 4. Количество вагонов в поезде 5. Тип вагонов цистерна. Скорость поезда, м/с 25. Скорость ветрового потока, м/с 15. Угол между векторами воздушного потока и ветровой нагрузкой 105. Высота насыпи 9. Глубина выемки -4.
- 7. Моторвагонный подвижной состав. Количество осей локомотива 8. Количество вагонов в поезде 6. Тип вагонов -. Скорость поезда, м/с 60. Скорость ветрового потока, м/с 135. Угол между векторами воздушного потока и ветровой нагрузкой 120. Высота насыпи 5. Глубина выемки -1.
- 8. Пассажирский поезд с локомотивной тягой. Количество осей локомотива 4. Количество вагонов в поезде 5. Тип вагонов -. Скорость поезда, м/с 70. Скорость ветрового потока, м/с 20. Угол между векторами воздушного потока и ветровой нагрузкой 90. Высота насыпи 6. Глубина выемки -1.
- 9. Грузовой поезд с локомотивной тягой. Количество осей локомотива 8. Количество вагонов в поезде 6. Тип вагонов крытый вагон. Скорость поезда, м/с 35. Скорость ветрового потока, м/с 20. Угол между векторами воздушного потока и ветровой нагрузкой 180. Высота насыпи 7. Глубина выемки -4.

10. Грузовой поезд с локомотивной тягой. Количество осей локомотива 8. Количество вагонов в поезде - 6. Тип вагонов - цистерна. Скорость поезда, м/с - 40. Скорость ветрового потока, м/с - 20. Угол между векторами воздушного потока и ветровой нагрузкой - 165. Высота насыпи - 7. Глубина выемки -4.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

	очини диодининия (ньодуми).	1
№ п/п	Библиографическое описание	Место доступа
1	Аэродинамика в вопросах и задачах: Н.Ф. Краснов,	НТБ (фб.)
	В.Н. Кошевой, А.Н. Данилов и др.; Ред. Н.Ф.	
	Краснов Однотомное издание Высш. шк., 1985	
2	Аэродинамика в вопросах и задачах: Н.Ф. Краснов,	НТБ (фб.)
	В.Н. Кошевой, А.Н. Данилов и др.; Ред. Н.Ф.	
	Краснов Однотомное издание Высш. шк., 1985	
3	Ивлиев, А. Д. Физика / А. Д. Ивлиев. — 4-е изд.,	https://e.lanbook.com/book/362933
	стер. — Санкт-Петербург : Лань, 2024. — 676 c. —	(дата обращения: 30.04.2025). —
	ISBN 978-5-507-48769-1. — Текст : электронный //	Режим доступа: для авториз.
	Лань: электронно-библиотечная система	пользователей
4	Доманский, И. В. Механика жидкости и газа / И. В.	URL:
	Доманский, В. А. Некрасов. — 2-е изд., стер. —	https://e.lanbook.com/book/277058
	Санкт-Петербург: Лань, 2023. — 140 с. — ISBN	(дата обращения: 30.04.2025). —
	978-5-507-45645-1. — Текст : электронный // Лань :	Режим доступа: для авториз.
	электронно-библиотечная система	пользователей
5	Назаров, Д. В. Экспериментальная аэродинамика:	URL:
	учебное пособие / Д. В. Назаров, А. Н. Никитин, Е.	https://e.lanbook.com/book/188894
	В. Тарасова. — Самара : Самарский университет,	(дата обращения: 30.04.2025). —
	2020. — 176 с. — ISBN 978-5-7883-1497-6. — Текст :	Режим доступа: для авториз.
	электронный // Лань : электронно-библиотечная	пользователей.
	система	
1	Механика жидкости и газа Л.Г. Лойцянский	НТБ (фб.)
	Однотомное издание Наука. Гл. ред. физмат. лит.,	
	1987	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Научная электронная библиотека eLIBRARY.RU (www.elibrary.ru)

Научно-техническая библиотека РУТ (МИИТ) (http://library.miit.ru)
Поисковая система издательства Springer Nature (https://link.springer.com/)

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

SolidWorks Flow Simulation

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Для проведения лабораторных занятий необходим компьютерный класс, в рачёте минимум один компьютер на двух обучающихся в группе.

9. Форма промежуточной аттестации:

Зачет в 9 семестре.

Курсовая работа в 9 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

заведующий кафедрой, доцент, д.н. кафедры «Электропоезда и локомотивы»

О.Е. Пудовиков

Согласовано:

Заведующий кафедрой ЭиЛ

О.Е. Пудовиков

Председатель учебно-методической

комиссии С.В. Володин