МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 09.03.01 Информатика и вычислительная техника, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Высоконагруженные системы

Направление подготовки: 09.03.01 Информатика и вычислительная

техника

Направленность (профиль): Технологии разработки программного

обеспечения

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 5665

Подписал: заведующий кафедрой Нутович Вероника

Евгеньевна

Дата: 01.09.2025

1. Общие сведения о дисциплине (модуле).

Целями освоения учебной дисциплины «Высоконагруженные системы» являются:

- формирование у обучающихся знаний о проблематике высоких нагрузок, методов и техник конфигурации баз данных под высокие нагрузки;
- формирование у обучающихся знаний о проблематике высоких нагрузок, методов и техник построения инфраструктуры для микросервисов.

Задачами освоения учебной дисциплины «Высоконагруженные системы» являются:

- формирование у обучающихся базовых знаний, навыков и умений проектирования и реализации высоконагруженных систем;
- формирование у обучающихся базовых знаний, навыков и умений тестирования высоконагруженных систем.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-5** Способен инсталлировать программное и аппаратное обеспечение для информационных и автоматизированных систем;
- **ОПК-7** Способен участвовать в настройке и наладке программноаппаратных комплексов;
- **ПК-7** Способен разрабатывать программные продукты под разные платформы для корпоративного рынка.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Владеть:

- навыками проектирования архитектуры компонентов высоконагруженных систем с выбором адекватных технологий и паттернов для обеспечения масштабируемости и производительности;
- навыками выявления узких мест в производительности системы (на уровне приложения, СУБД, инфраструктуры) и применения методов их оптимизации и обеспечения отказоустойчивости;
- навыками проведения комплексного нагрузочного тестирования, анализа его результатов и формулирования рекомендаций по улучшению характеристик системы.

Знать:

- проблематику высоких нагрузок, ключевые метрики производительности (RPS, latency, error rate) и цели проектирования высоконагруженных систем;
- архитектурные подходы к построению высоконагруженных систем (монолит, микросервисы, serverless) и принципы их масштабирования (вертикальное, горизонтальное, stateless/stateful);
- методы оптимизации производительности СУБД (индексирование, партиционирование, денормализация) и обеспечения их доступности (репликация, шардирование);
- принципы и стратегии кэширования данных на различных уровнях системы;
- роль и принципы работы брокеров сообщений (например, RabbitMQ, Kafka) в асинхронных архитектурах;
- основы контейнеризации (Docker) и ее роль в построении и эксплуатации высоконагруженных систем;
- принципы работы балансировщиков нагрузки и их влияние на масштабируемость и отказоустойчивость;
- основы и цели нагрузочного тестирования, мониторинга и логирования систем.

Уметь:

- применять базовые техники оптимизации запросов к СУБД;
- применять стратегии кэширования данных для снижения нагрузки на основные хранилища;
- настраивать базовые механизмы репликации данных в СУБД для повышения доступности и распределения нагрузки чтения;
- разрабатывать компоненты систем, использующие асинхронное взаимодействие через брокеры сообщений для декомпозиции задач и повышения отзывчивости;
- применять инструменты для проведения нагрузочного тестирования и собирать базовые метрики производительности;
- контейнеризировать приложения для стандартизации развертывания и изоляции;
- настраивать базовые конфигурации балансировщиков для распределения трафика между экземплярами сервисов;
- настраивать и использовать базовые средства мониторинга и логирования для отслеживания состояния и диагностики проблем системы.

3. Объем дисциплины (модуля).

3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 3 з.е. (108 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Turn vinobunity polygraphy	Количество часов	
Тип учебных занятий		Семестр №5
Контактная работа при проведении учебных занятий (всего):	48	48
В том числе:		
Занятия лекционного типа	16	16
Занятия семинарского типа	32	32

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 60 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

№ п/п	Тематика лекционных занятий / краткое содержание
1	Проблемы высоких нагрузок и архитектурные подходы
	Рассматриваемые вопросы:
	- проблематика высоких нагрузок;
	- различные модели (монолит, микросервисы), их особенности и недостатки;
	- большие данные и нагрузки – узкие места;
	- компромиссы при проектировании;
	- конкурентность и параллелизм (потоки, корутины, асинхронные подходы).

No				
п/п	Тематика лекционных занятий / краткое содержание			
2	Масштабирование и измерение производительности			
_	Рассматриваемые вопросы:			
	гассматриваемые вопросы единицы измерения нагрузки; - подходы к масштабированию (вертикальное, горизонтальное, stateless/stateful);			
	- типовые проблемы высоконагруженных проектов;			
	- основы нагрузочного тестирования (цели, критерии успешности, метрики производительнос			
3	СУБД и высокие нагрузки. Индексы. Репликация			
	Рассматриваемые вопросы:			
	- введение в индексы, типы индексов и структуры данных;			
	- влияние индексов на производительность;			
	- репликация, виды репликации (master-slave, master-master), преимущества и недостатки,			
	согласованность данных.			
4	СУБД и высокие нагрузки. Шардирование. Кеширование			
	Рассматриваемые вопросы:			
	- шардирование, стратегии шардирования, их преимущества и недостатки;			
	- перешардирование;			
	- кэширование (клиентское, серверное, CDN, кэширование запросов, объектов), стратегии			
	инвалидации кэша;			
	- популярные решения для кэширования (Redis, Memcached).			
5				
	Рассматриваемые вопросы:			
	- ACID (atomicity, consistency, isolation, durability); - проблемы конкурентного доступа и уровни изоляции транзакций; - OLAP и OLTP системы;			
	- In-memory СУБД (Tarantool, Redis как СУБД), их преимущества и сценарии использования.			
6	Асинхронное взаимодействие. Брокеры сообщений			
	Рассматриваемые вопросы:			
	- назначение и принципы работы брокеров сообщений; - паттерны использования (очереди, publish/subscribe);			
	- паттерны использования (очереди, puonsil/suoscribe), - популярные брокеры (RabbitMQ, Kafka), их архитектура и различия.			
7	Микросервисы и протоколы			
'				
	Рассматриваемые вопросы: - декомпозиция и предметно-ориентированное программирование;			
	- декомпозиция и предметно-ориентированное программирование, - подходы к проектированию микросервисов;			
	- подходы к проектированию микросервнеев, - различия между микросервисным и монолитным подходами; протоколы взаимодействия (НТТР,			
	gRPC, WebSocket);			
	- событийно-ориентированный подход к архитектуре;			
	- CQRS и Event Sourcing.			
8	Обеспечение надежности и наблюдаемости			
	Рассматриваемые вопросы:			
	- балансировка нагрузки (DNS, L4/L7, HAProxy, Nginx);			
	- методы обеспечения отказоустойчивости (retry, circuit breaker, graceful degradation);			
	- контейнеризация (Docker, k8s);			
	- основы CI/CD; мониторинг, логирование и трассировка (Prometheus, Grafana, ELK/Loki).			

4.2. Занятия семинарского типа.

Практические занятия

No				
п/п	Тематика практических занятий/краткое содержание			
1	Нагрузочное тестирование и первичный анализ производительности			
	В результате выполнения практической работы студент осваивает умение применять инструмен			
	для проведения нагрузочного тестирования и формирует основы навыка анализа его результатов.			
2	Оптимизация производительности СУБД. Индексирование			
	В результате выполнения практической работы студент осваивает умение применять базовые			
	техники оптимизации запросов к СУБД.			
3	Применение кэширования для снижения нагрузки.			
	В результате выполнения практической работы студент осваивает умение применять стратегии			
	кэширования данных для снижения нагрузки на основные хранилища.			
4	Обеспечение доступности СУБД через репликацию			
	В результате выполнения практической работы студент осваивает умение настраивать базовые			
	механизмы репликации данных в СУБД.			
5	5 Разработка асинхронных компонентов с использованием брокера сообщений			
	В результате выполнения практической работы студент осваивает умение разрабатывать			
	компоненты систем, использующие асинхронное взаимодействие через брокеры сообщений.			
6	Контейнеризация приложения с использованием Docker			
	В результате выполнения практической работы студент осваивает умение контейнеризировать			
	приложения с использованием Docker.			
7	Балансировка нагрузки и горизонтальное масштабирование			
	В результате выполнения практической работы студент осваивает умение настраивать базовые			
	конфигурации балансировщиков нагрузки.			
8	Интеграция системы мониторинга и анализ поведения под нагрузкой			
	В результате выполнения практической работы студент осваивает умение настраивать и			
	использовать базовые средства мониторинга и развивает навык проведения комплексного			
	нагрузочного тестирования и анализа его результатов.			
9	In-memory СУБД			
	В результате выполнения практической работы студент получает навык работы с СУБД Tarantool.			
10	Разработка высоконагруженных сервисов			
	В результате выполнения практической работы студент получает навык разработки типового			
	высоконагруженного микросервиса.			

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	Работа с лекционным материалом
2	Работа с литературой
3	Текущая подготовка к занятиям
4	Подготовка к промежуточной аттестации.
5	Подготовка к текущему контролю.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ π/π	Библиографическое описание	Место доступа
1	Нурматова, Е. В. Управление большими базами данных и высоконагруженными системами: учебное пособие / Е. В. Нурматова, Р. Ф. Халабия, Л. В. Бунина. — Москва: РТУ МИРЭА, 2019. — 120 с. — Текст: электронный Учебное пособие	https://e.lanbook.com/book/171496 (дата обращения: 15.04.2025)
2	Кочер, П. С. Микросервисы и контейнеры Docker: руководство / П. С. Кочер; перевод с английского А. Н. Киселева. — Москва: ДМК Пресс, 2019. — 240 с. — ISBN 978-5-97060-739-8. — Текст: электронный	https://e.lanbook.com/book/123710 (дата обращения: 15.04.2025)
3	Ёсу, М. Т. Принципы организации распределенных баз данных / М. Т. Ёсу, П. Вальдуриес; перевод с английского А. А. Слинкина. — Москва: ДМК Пресс, 2021. — 678 с. — ISBN 978-5-97060-391-8. — Текст: электронный	https://e.lanbook.com/book/190719 (дата обращения: 15.04.2025)
4	Осипов, Д. Л. Технологии проектирования баз данных / Д. Л. Осипов. — Москва : ДМК Пресс, 2019. — 498 с. — ISBN 978-5-97060-737-4. — Текст : электронный	https://e.lanbook.com/book/131692 (дата обращения: 15.04.2025)

- 6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).
 - Научно-техническая библиотека РУТ (МИИТ) (http://library.miit.ru);
- Информационный портал Научная электронная библиотека eLIBRARY.RU (www.elibrary.ru);
 - Образовательная платформа «Юрайт» (https://urait.ru/);
- Электронно-библиотечная система издательства «Лань» (http://e.lanbook.com/).
- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Microsoft Office.

.NET 8.

Java 21.

Браузер с выходом в интернет.

Microsoft Visual Studio CE.

JetBrains IntelliJ IDEA Community Edition.

PostgreSQL.

Tarantool.

RabbitMQ.

Docker Desktop.

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебные аудитории для проведения учебных занятий, оснащенные компьютерной техникой и наборами демонстрационного оборудования.

Для практических занятий — наличие персональных компьютеров вычислительного класса.

9. Форма промежуточной аттестации:

Зачет в 5 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

старший преподаватель кафедры «Цифровые технологии управления транспортными процессами»

Е.А. Заманов

Согласовано:

Заведующий кафедрой ЦТУТП

В.Е. Нутович

Председатель учебно-методической

комиссии

Н.А. Андриянова