МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 09.03.02 Информационные системы и технологии, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Высокопроизводительные вычислительные системы

Направление подготовки: 09.03.02 Информационные системы и

технологии

Направленность (профиль): Информационные системы и технологии на

транспорте

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 5665

Подписал: заведующий кафедрой Нутович Вероника

Евгеньевна

Дата: 22.04.2025

1. Общие сведения о дисциплине (модуле).

Целями освоения дисциплины (модуля) являются:

овладение теоретическими области знаниями высокопроизводительных вычислительных систем (ВВС), способах их оценки и выбора для построения информационных систем различного назначения, а также приобретение умений и навыков применения теоретических знаний при создании И использовании высокопроизводительных вычислительных систем и их компонентов в практических ситуациях.

Задачами дисциплины (модуля) являются:

- дать представление о назначении, области применения, архитектурных особенностях и компонентах высокопроизводительных вычислительных систем;
- привить навыки создания высокопроизводительных вычислительных систем из готовых компонентов и оценки характеристик их производительности;
- привить навыки разработки программного обеспечения высокопроизводительных вычислительных систем, включая инсталляцию, отладку, проверку работоспособности и модификацию;
- познакомить с пользовательской средой высокопроизводительных вычислительных систем и технологией их настройки.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-5** Способен инсталлировать программное и аппаратное обеспечение для информационных и автоматизированных систем;
- **ПК-4** Способен разрабатывать компоненты информационной системы, включая инсталляцию, отладку, проверку работоспособности и модификацию.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Уметь:

- разрабатывать требования и спецификации аппаратного и программного обеспечения для построения высокопроизводительных вычислительных систем;

- разрабатывать и отлаживать параллельные программы в соответствии со спецификацией;
- производить измерение и анализ показателей эффективности высокопроизводительных вычислительных систем.

Знать:

- назначение, архитектуру, устройство и функционирование высокопроизводительных вычислительных систем, а также области их применения;
- состав аппаратного и системного программного обеспечения высокопроизводительных вычислительных систем;
- средства виртуализации вычислений, программные компоненты кластерных систем;
 - основные показатели и методы оценки эффективности вычислений.

Владеть:

- методами инсталляции и настройки программного обеспечения высокопроизводительных кластерных систем,
- навыками работы в пользовательской среде операционной системы высокопроизводительных вычислительных систем (по выбору);
 - инструментальными средствами разработки параллельных программ;
- средствами запуска параллельных программ, навыками проведения эксперимента по оценке эффективности вычислений.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 4 з.е. (144 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
	Всего	Семестр №7
Контактная работа при проведении учебных занятий (всего):	64	64
В том числе:		
Занятия лекционного типа	32	32
Занятия семинарского типа	32	32

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 80 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

No	Тематика лекционных занятий / краткое содержание	
Π/Π		
1	Основные понятия.	
	Рассматриваемые вопросы:	
	- цели и задачи дисциплины;	
	- понятие высокопроизводительной вычислительной системы (ВВС);	
	- принципы организации ВВС;	
	- методы и модели оценки производительности систем;	
	- способы увеличения производительности ВС.	
2	Парадигмы распараллеливания вычислительного процесса.	
_	Рассматриваемые вопросы:	
	- гранулярность потоков команд;	
	- модели распараллеливания;	
	- закон Амдала;	
	- классификация способов параллельной обработки по Флинну.	
3	Параллелизм на уровне процессора	
	Рассматриваемые вопросы:	
	- суперскалярные процессоры;	
	- конвейерные процессоры;	
	- суперконвейерные процессоры;	
	- векторные процессоры.	
4	Параллелизм на уровне архитектуры системы	
	Рассматриваемые вопросы:	
	- системы с общей памятью;	
	- NUMA системы;	
	- системы с распределенной памятью.	

No		
	Тематика лекционных занятий / краткое содержание	
п/п		
5	1	
	Рассматриваемые вопросы:	
	- понятие кластера;	
	- типы кластеров;	
	- компоненты кластера и их размещение;	
	- выбор узлов и сетевая инфраструктура кластера;	
	- программное обеспечение кластера.	
6	Технологии параллельного программирования	
	Рассматриваемые вопросы:	
	- обзор технологий создания параллельных программ;	
	- технология MPI;	
	- архитектура МРІ кластера;	
	- программное обеспечение МРІ.	
7	Oavanyya dywynyy Syfryaraw MDI	
7	Основные функции библиотеки МРІ	
	Рассматриваемые вопросы:	
	- структура МРІ программы;	
	- подготовка и запуск МРІ программы;	
	- обзор функций библиотеки MPI;	
	- определение количества и ранга процессов;	
8	Организации взаимодействия параллельных МРІ процессов.	
U	Рассматриваемые вопросы:	
	- режимы обмена сообщениями;	
	- гочечная передача и прием сообщений;	
	- коллективный обмен сообщениями;	
	- широковещательная рассылка и редукция;	
	- сборка и разбиение массива.	
	- соорка и разонение массива.	
9	Технологии виртуализации вычислений.	
	Рассматриваемые вопросы:	
	- понятие виртуализации;	
	- виртуальная машина;	
	- типы виртуализации;	
	- программное обеспечение для виртуализации.	
10	Облачные технологии.	
	Рассматриваемые вопросы:	
	- характеристика облачных технологий;	
	- модели развертывания и обслуживания;	
	- облачные платформы.	
11	T	
11	Технологии виртуализации данных.	
	Рассматриваемые вопросы:	
	- понятие виртуализации данных;	
	- RAID технологии;	
	- основные модели RAID.	
10	Cuana and an	
12	Системы хранения данных.	
	Рассматриваемые вопросы:	

No	Tovorova voluvova volustivi / zmorvo oo zonavova
п/п	Тематика лекционных занятий / краткое содержание
	- типы и назначение систем хранения данных; - типовые архитектуры систем хранения данных; - современные и перспективные носители информации; - промышленные модели систем хранения данных.
13	Высокопроизводительные вычислительные системы на ж.д. транспорте . Рассматриваемые вопросы: - архитектура и компоненты ЦОД; - системы хранения данных; - серверные платформы; - консолидация серверов.
14	Архитектура и компоненты мэйнфреймов IBM. Рассматриваемые вопросы: - основные характеристики мэйнфреймов System z; - обзор аппаратных компонентов (процессоры, память); - подсистема ввода-вывода; - сетевые коммуникации.
15	Операционная система z/OS. Рассматриваемые вопросы: - структура и компоненты; - базовые механизмы управления ресурсами, - управление данными; - управление заданиями.
16	Перспективы развития высокопроизводительных вычислительных систем. Рассматриваемые вопросы: - тенденции развития высокопроизводительных кластеров (обзор рейтинга top500.org); - тенденции развития мэйнфреймов IBM; - новые технологии.

4.2. Занятия семинарского типа.

Лабораторные работы

No	Наименование лабораторных работ / краткое содержание		
п/п			
1	Построение лабораторного вычислительного кластера		
	В результате выполнения лабораторной работы студент получает навыки установки, настройки и		
	тестирования программного обеспечения для построения вычислительного кластера.		
2	Подготовка тестовой МРІ-программы.		
	В результате выполнения лабораторной работы студент знакомится с алгоритмом и программным		
	кодом параллельной МРІ программы и получает навыки настройки среды программирования, а		
	также подготовки и выполнения параллельной МРІ программы на кластере в интерактивном		
	режиме.		

No	Наименование лабораторных работ / краткое содержание		
Π/Π			
3	Экспериментальное исследование лабораторного вычислительного кластера.		
	В результате выполнения лабораторной работы студент получает навыки проведения		
	экспериментального исследования для оценки показателей производительности вычислительного		
	кластера и анализа полученных результатов на основе тестовой МРІ программы.		
4	Подготовка к работе на вычислительном кластере МИИТа.		
	В результате выполнения лабораторной работы студент получает навыки установки и настройки		
	программного обеспечения для терминального доступа к кластеру, настройки пользовательской		
	среды shell Linux, а также подготовки текста тестовой параллельной программы для использования		
	в пакетном режиме.		
5	Работа с менеджером очередей Slurm.		
	В результате выполнения лабораторной работы студент знакомится со средствами работы с		
	менеджером очередей Slurm, получает навыки разработки и запуска пакетных заданий на		
	параллельную обработку.		
6	Экспериментальное исследование высокопроизводительного кластера МИИТа.		
	В результате выполнения лабораторной работы студент получает навыки проведения		
	экспериментального исследования для оценки показателей производительности вычислительного		
	кластера МИИТа и анализа полученных результатов с учетом времени на пересылку данных.		
7	Разработка и описание алгоритма параллельной программы.		
	В результате выполнения лабораторной работы студент отрабатывает умения и навыки разработки		
	и описания алгоритма параллельной программы по индивидуальному заданию.		
8	Параллельное программирование		
	В результате выполнения лабораторной работы студент отрабатывает умения и навыки по		
	созданию, отладке и тестированию кода параллельной программы на основе технологии МРІ по		
	индивидуальному заданию.		

4.3. Самостоятельная работа обучающихся.

№ π/π	Вид самостоятельной работы
1	Подготовка к лабораторным работам.
2	Оформление отчетов и подготовка к защите лабораторных работ.
3	Работа с дистанционным курсом "Основы операционной системы z/OS.
4	Подготовка вопросов преподавателю для лекции в формате пресс-конференции
5	Подготовка к промежуточной аттестации.
6	Подготовка к текущему контролю.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Антонов, А.С. Параллельное	https://book.ru/book/917968 (дата
	программирование с использованием технологии MPI : Курс лекций / A.C.	обращения: 05.10.2025). — Текст : электронный.

	Антонов — Москва : Интуит НОУ, 2016. — 83 с.	
2	Варфоломеев, В.А. Пользовательская среда ISPF/PDF операционной системы z/OS: учебное пособие / В.А. Варфоломеев. Москва: МИИТ, 2018, 238	https://znanium.com/catalog/product/1895293 (дата обращения: 11.10.2022).
	c.	
3	Жуматий, С.А. Вычислительное дело и	https://book.ru/book/917698 (дата
	кластерные системы: Курс лекций / С.А.	обращения: 05.10.2025). — Текст:
	Жуматий, В.В. Воеводин — Москва:	электронный.
	Интуит НОУ, 2016. — 138 с.	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Официальный сайт РУТ (МИИТ) (httpы://www.rut-miit.ru).

Научно-техническая библиотека РУТ (МИИТ). (http://library.miit.ru).

Система дистанционного обучения ИУЦТ (http://sdo.imiit.ru).

Электронно-библиотечная система ibooks.ru (http://ibooks.ru/)

Электронно-библиотечная система Лань (https://e.lanbook.com)

Рейтинг 500 наиболее мощных компьютеров в мире (top500.org).

Лаборатория параллельных информационных технологий НИВЦ МГУ (parallel.ru).

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Текстовый редактор (MS Word, Open Office) и средства просмотра документов (Foxit Reader).

Пакет разработки программ Microsoft Visual Studio.

Терминальный клиент WinSCP.

Терминальный клиент Vista TN3270.

Пакет разработки и запуска параллельных программ MPI (MPICH 2 или MS MPI).

Электронный дистанционный курс "Основы операционной системы z/OS".

Платформа для командной работы Microsoft Teams (при проведении занятий с применением электронного обучения и дистанционных образовательных технологий).

При организации обучения по дисциплине (модулю) с применением электронного обучения и дистанционных образовательных технологий необходим доступ каждого студента к информационным ресурсам — библиотечному фонду Университета, сетевым ресурсам и информационнотелекоммуникационной сети «Интернет».

В случае проведении занятий с применением электронного обучения и дистанционных образовательных технологий может понадобиться наличие следующего программного обеспечения (или их аналогов): ОС Windows, Microsoft Office, Интернет-браузер, Microsoft Teams и т.д.

В образовательном процессе, при проведении занятий с применением электронного обучения и дистанционных образовательных технологий, могут применяться следующие средства коммуникаций: ЭИОС РУТ(МИИТ), Microsoft Teams, электронная почта, скайп, Zoom, WhatsApp и т.п.

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебные аудитории для проведения учебных занятий, оснащенные компьютерной техникой и наборами демонстрационного оборудования.

Для выполнения лабораторных работ дополнительно используется следующее серверное программное и аппаратное обеспечение:

- вычислительный кластер МИИТа с операционной системой Linux и пакетным менеджером.

Для выполнения самостоятельной работы студентов дополнительно обеспечивается доступ по сети Интернет к системе дистанционного обучения ИУЦТ (sdo.imiit.ru) для изучения электронного курса "Основы операционной системы z/OS".

В случае проведении занятий с применением электронного обучения и дистанционных образовательных технологий необходимо наличие компьютерной техники, для организации коллективных и индивидуальных форм общения педагогических работников со студентами, посредством используемых средств коммуникации.

9. Форма промежуточной аттестации:

Зачет в 7 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, доцент кафедры «Цифровые технологии управления транспортными процессами»

В.А. Варфоломеев

Согласовано:

Заведующий кафедрой ЦТУТП

В.Е. Нутович

Председатель учебно-методической

комиссии Н.А. Андриянова