МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы специалитета по специальности 23.05.03 Подвижной состав железных дорог, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Высокоскоростной подвижной состав с комбинированными энергетическими установками

Специальность: 23.05.03 Подвижной состав железных дорог

Специализация: Высокоскоростной наземный транспорт

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 5214

Подписал: заведующий кафедрой Пудовиков Олег

Евгеньевич

Дата: 03.05.2025

1. Общие сведения о дисциплине (модуле).

Целями освоения дисциплины «Высокоскоростной подвижной состав с комбинированными энергетическими установками» являются:

- формирование у студентов знаний конструкции, процессов и характеристик, методов и способов проектирования тягового подвижного состава с комбинированными энергетическими установками, а именно контактно-аккумуляторного, дизель-контактного, с накопителями энергии различного типа.

Задачами освоения дисциплины «Тяговый подвижной состав с комбинированными энергетическими установками» являются:

- изучение конструкции, процессов и характеристик тягового подвижного состава с комбинированными энергетическими установками;
- освоение типовых расчетных методик для обоснования параметров, также для расчета характеристик тягового подвижного состава с комбинированными энергетическими установками;
- освоение навыками проектирования узлов и систем тягового подвижного состава с комбинированными энергетическими установками.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ОПК-10 - Способен формулировать и решать научно-технические задачи в области своей профессиональной деятельности.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

Знать конструкцию, процессы и характеристики, методы и способы проектирования выскокоскоростного подвижного состава с комбинированными энергетическими установками, а именно контактно-аккумуляторного, дизель-контактного, с накопителями энергии различного типа

Уметь:

Уметь применять типовые расчетные методики для обоснования параметров, также для расчета характеристик выскокоскоростного подвижного состава с комбинированными энергетическими установками

Владеть:

Владеть навыками проектирования узлов и систем выскокоскоростного подвижного состава с комбинированными энергетическими установками

- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 2 з.е. (72 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Tura variofica de conseguir	Количество часов	
Тип учебных занятий		Семестр №8
Контактная работа при проведении учебных занятий (всего):	48	48
В том числе:		
Занятия лекционного типа	16	16
Занятия семинарского типа	32	32

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 24 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

№ п/п	Тематика лекционных занятий / краткое содержание
1	Классификация подвижного состава с комбинированными энергетическими

No॒	Tavarana zavarana zavarana zavarana (2000)			
Π/Π	Тематика лекционных занятий / краткое содержание			
	установками			
	Классификация тягового подвижного состава. Источники энергии комбинированных энергетических			
	установок, структура энергетической цепи тягового подвижного состава в комбинированной энергетичсекой установкой			
2	Энергетические установки с двигателями внутреннего сгорания			
	Двигатели внутреннего сгорания в комбинированных энергетических установках. Передачи мощности в энергетических установках с двигателями внутреннего сгорания			
3	Накопители энергии в комбинированных энергетичсеких установках			
	Емкостные накопители энергии, характеристики, параметры и режимы работы и область применения			
	емкостных накопителей. Индуктивные накопители энергии, характеристики, параметры, режимы работы и область применения индуктивных накопителей. Накопители энергии с использованием			
	аккумуляторных батарей, характеристики, параметры и режимы работы и область применения			
	аккумуляторных батарей как накопителей энергии			
4	Электрохимические источники энергии в комбинированных энергетических			
	установках			
	Водородные топливные элементы. Конструкция, принцип действия водородных топливных			
	элементов. Особенности эксплуатации тягового подвижного состава с водородными топливными			
	элементами			
5	Управление комбинированной энергетической установкой локомотива			
	Способы управления потоками энергии тягового подвижного состава с комбинированной			
	энергетической установкой. Управление в режимах тяги и торможения. Питание потребителей			
	собственных нужд тягового подвижного состава. Особенности управления потоками энергии при работе в пассажирском, грузовом и маневровом движении, а также на промышленных предприятиях			
6	Экологические аспекты применения выскокоскоростного подвижного состава с			
0				
	комбинированными энергетическими установками			
	Экологические аспекты применения тягового подвижного состава с комбинированными энергетическими установками. Промышленная безопасность подвижного состава и объектов			
	локомотивного хозяйства при эксплуатации и обслуживании тягового подвижного состава с			
	комбинированными энергетическими установками			
	Non-ominiposamisani Shopi otti i tokinini yetiinoskumi			

4.2. Занятия семинарского типа.

Практические занятия

№ п/п	Тематика практических занятий/краткое содержание		
1	Изучение устройства и принципа действия энергетичсекой установки с двигателями		
	внутреннего сгорания		
	Изучение электрических передач мощности локомотивов с энергетической установкой, использующей		
	двигатели внутреннего сгорания. Устройство передачи переменно-постоянного и переменного тока		
2	Моделирование тягового электропривода		
	Математическая модель и её программная реализация тягового электропривода постоянного и		
	переменного тока. Уравнение движения поезда и его решение с использованием вычислительной		
	машины		
3	Моделирование энергетической установки с двигателем внутреннего сгорания		
	Модель дизель-генераторной установки для исследования переходных и установившегося режима		
	движения поезда. Программная реализация модели		
4	Моделирование накопителя энергии		
	Модель ёмкостного, индуктивного и аккумуляторного накопителей энергии. Программная реализация		

№ п/п	Тематика практических занятий/краткое содержание		
	модели		
5	Исследование цикла работы тягового подвижного состава		
	Модели нагружения тягового подвижного состава при пассажирском, грузовом и маневровом		
	движении		
6	Управление комбинированной энергетической установкой		
	Критерии эффективности алгоримов управления энергетической установкой. Выбор алгоритма работ		
	энергетической установки.		
7	Выбор параметров источников энергии комбинированной энергетической установки		
	Исследование влияния эксплуатационных факторов на выбор рациональных параметров		
	энергетичемской установки и её компонентов для выбранных условий эксплуатации подвижного		
	состава		

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	Работа с лекционным материалом
2	Подготовка к практическим занятиям
3	Подготовка к промежуточной аттестации.
4	Подготовка к текущему контролю.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	ЛОКОМОТИВНЫЕ ЭНЕРГЕТИЧЕСКИЕ УСТАНОВКИ В.Н. Балабин, А.В. Самотканов Книга 2019	
2	Энергетические установки подвижного состава В.Е. Пигарев Однотомное издание Маршрут, 2004	Библиотека МКТ (Люблино); НТБ (ЭЭ); НТБ (уч.3); НТБ (фб.); НТБ (чз.2)
3	Бирюков, В. В. Гибридные транспортные средства: учебник / В. В. Бирюков. — Новосибирск: НГТУ, 2021. — 252 с. — ISBN 978-5-7782-4491-7	URL: https://e.lanbook.com/book/216176 (дата обращения: 30.04.2025)
4	Локомотивные энергетические установки. Расчет рабочего процесса комбинированного тепловозного дизеля: учебное пособие / В. В. Грачев, В. А. Кручек, А. В. Грищенко, Ф. Ю. Базилевский. — Санкт-Петербург: ПГУПС, 2024. — 47 с. — ISBN 978-5-7641-1984-7	URL: https://e.lanbook.com/book/439532 (дата обращения: 30.04.2025). — Режим доступа: для авториз. пользователей.

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Официальный сайт РУТ (МИИТ) (https://www.miit.ru/).

Научно-техническая библиотека РУТ (МИИТ) (http:/library.miit.ru).

Электронно-библиотечная система издательства «Лань» (http://e.lanbook.com/).

Электронно-библиотечная система ibooks.ru (http://ibooks.ru/).

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Система автоматизированного проектирования Компас; специализированная программа Mathcad Программный пакет Matlab Simulink

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Стенд испытаний тяговых электродвигателей методом взаимной нагрузки.

Дизель-генераторная установка локомотива Компьютерный класс с предустановленным программным обеспечением Образцы накопителей электрической энергии

9. Форма промежуточной аттестации:

Зачет в 8 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

заведующий кафедрой, доцент, д.н. кафедры «Электропоезда и локомотивы»

О.Е. Пудовиков

Согласовано:

Заведующий кафедрой ЭиЛ

О.Е. Пудовиков

Председатель учебно-методической

комиссии С.В. Володин