МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 21.03.02 Землеустройство и кадастры, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Высшая геодезия

Направление подготовки: 21.03.02 Землеустройство и кадастры

Направленность (профиль): Кадастр недвижимости

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ) ID подписи: 72156

Подписал: заведующий кафедрой Розенберг Игорь Наумович Дата: 01.07.2024

1. Общие сведения о дисциплине (модуле).

Целью изучения специальной дисциплины «Высшая геодезия» является приобретение студентами необходимых знаний по выбору способов, методов, и технических средств при выполнении инженерно-геодезических работ в ходе изысканий и проектирования в землеустройстве, для развития и сгущения геодезических сетей, при кадастре объектов недвижимого имущества; необходимых знаний для свободного ориентирования в современных методах решения землеустроительных и кадастровых работ, и целесообразности их применения в том или ином случае; приобретение навыков применения современных методов, исследования новых, внедрения автоматизации решения задач в землеустройстве и кадастрах.

В результате освоения данной дисциплины бакалавр приобретает знания, умения и навыки, соответствующие целям образовательной программы «Землеустройство и кадастры».

Цель преподавания дисциплины состоит в фундаментальной научной и практической подготовке студентов к выполнению геодезических работ по созданию опорных геодезических сетей.

Успешное освоение всех разделов курса высшей геодезии является необходимой предпосылкой для технически строгого решения практических задач, возникающих в деятельности будущего специалиста.

2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ПК-2 - Способность проведения исследований и анализа их результатов в землеустройстве и кадастрах.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 6 з.е. (216 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами,

привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

		Количество часов		
Тип учебных занятий	Всего	Семестр		
		№6	№7	
Контактная работа при проведении учебных занятий (всего):	120	56	64	
В том числе:				
Занятия лекционного типа	60	28	32	
Занятия семинарского типа	60	28	32	

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 96 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

No	Томотучко покумочни у оружтуй / керетусов во поручения				
Π/Π	Тематика лекционных занятий / краткое содержание				
1	Введение в дисциплину				
	Основные задачи высшей геодезии, связь с другими дисциплинами. Геоид, квазигеоид, общий земной				
	эллипсоид, референц-эллипсоид. Поверхности				
	относимости. Астрономическая и геодезическая системы координат. Аномалии высот. Уклонения				
	отвесных линий. Фундаментальные исходные геодезические даты.				
2	Опорные геодезические сети				
	Геодезические сети, их назначение				
	и способы построения. Классификация плановых геодезических сетей. Основные положения и схемы				
	построения геодезических сетей России. Пункты Лапласа. Плотность геодезических сетей.				
	Предварительное знакомство с ОП-АГС-95.Проектирование государственных геодезических сетей.				
	Типовые схемы построения триангуляции.				
	Наружные геодезические знаки. Визирные цели, фонари и гелиотропы. Типы центров геодезических				
	пунктов.				
3	Ориентирные пункты и их назначение.				
	Центры ориентирных пунктов. Внешнее оформление пунктов государственной геодезической сети.				

№ п/п	Тематика лекционных занятий / краткое содержание	
4	Высокоточные измерения горизонтальных углов и направлений	
5	Элементы приведения и способы их определения. Приведение направлений к центрам пунктов. Предварительная обработка триангуляции, последовательность вычислений.	

4.2. Занятия семинарского типа.

Лабораторные работы

№	Наумамарамия набаратарум и рабат / кратура за наружума		
Π/Π	Наименование лабораторных работ / краткое содержание		
1	Астрономическая и геодезическая системы координат. Исходные геодезические		
	даты.		
2	Знакомство с ОП-АГС-95. Типовые схемы построения триангуляции		
3	Измерение горизонтальных направлений способом		
4	Предварительная обработка триангуляции, последовательность вычислений.		
	Необходимая точность вычисления поправок.		
5	Методы решения малых сферических треугольников. Способ Лежандра. Основные		
	уравнения проекции Гаусса. Перенос расстояний и направлений с поверхности		
	эллипсоида на плоскость		
6	Измерение углов в полигонометрии. Трехштативный метод измерения углов.		
	Параллактический метод определения длин линий		
7	Основная формула тригонометрического нивелирования. Определение высоты		
	теодолита и визирной цели над центром пункта.		
8	Нормальная система высот. Поправки за переход к нормальной системе высот.		

4.3. Самостоятельная работа обучающихся.

№	Вид самостоятельной работы
п/п	
1	1. Подготовка к практическим занятиям.
2	2. Проработка конспекта лекций.
3	3. Изучение учебной литературы из приведенных источников
4	Выполнение курсовой работы.
5	Подготовка к промежуточной аттестации.
6	Подготовка к текущему контролю.

4.4. Примерный перечень тем курсовых работ Варианты выдаются на занятиях

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Инженерная геодезия Геннадий Гавриилович Поклад, К.Н. Макаров, С.П. Гриднев [и др.] Книга Издательство Юрайт, 2020	ИТБ УЛУПС (Абонемент ЮИ); ИТБ УЛУПС (ЧЗ1 ЮИ)
1	Математическая обработка городских геодезических сетей Г.М. Гринберг Однотомное издание Недра, 1992	НТБ (фб.)

- 6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).
- 1.http://library.miit.ru/ электронно-библиотечная система Научнотехнической библиотеки МИИТ.
- 2.http://e.lanbook.com электронно-библиотечная система Издательство «Лань»
 - 3. http://elibrary.ru/ научно-электронная библиотека.
 - 4. Поисковые системы: Yandex, Google, Mail.
 - 5. gisa.ru Геоинформационный портал ГИС-Ассоциации
- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Для проведения лекционных занятий необходима специализированная лекционная аудитория с мультимедиа аппаратурой и интерактивной доской. Для проведения занятий также требуется компьютерное и мультимедийное оборудование (интерактивная доска), программа обработки спутниковых данных Pinnacle или TopconTools

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Для проведения аудиторных занятий и самостоятельной работы требуется:

- 1. Рабочее место преподавателя с персональным компьютером, подключённым к сетям INTERNET и INTRANET.
- 2. Специализированная лекционная аудитория с мультимедиа аппаратурой и интерактивной доской.
 - 3. Учебные лаборатории: геодезическая и лаборатория спутниковой

навигации. Класс геоинформационных технологий, оснащённый локальной вычислитель ной сетью, включающей сервер, станции сканирования и обработки растровых и векторных изображений и рабочие станции для обучения пользования кли ентской частью геоинформационных систем.

9. Форма промежуточной аттестации:

Зачет в 6 семестре.

Курсовая работа в 7 семестре.

Экзамен в 7 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, к.н. кафедры «Геодезия, геоинформатика и навигация»

А.Д. Тихонов

Согласовано:

Заведующий кафедрой ГГН

И.Н. Розенберг

Председатель учебно-методической

комиссии

М.Ф. Гуськова