МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 23.03.01 Технология транспортных процессов, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Вычислительная техника и сети в отрасли

Направление подготовки: 23.03.01 Технология транспортных процессов

Направленность (профиль): Организация перевозок и управление на

автомобильном транспорте

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 4196

Подписал: заведующий кафедрой Желенков Борис

Владимирович

Дата: 24.05.2022

1. Общие сведения о дисциплине (модуле).

Дисциплина посвящена изучению информационным системам. Целями освоения учебной дисциплины «Вычислительная техника и сети в отрасли» являются изучение студентами назначения и основных компонентов систем вычислительной техники, изложе-ние основных теоретических концепций, положенных в основу построения современных вычислительных систем, сетей и телекоммуникаций..

Основными задачами дисциплины являются: усвоение студентами физических основ вычислительных процессов, основ построения функционирования вычислительных ма-шин, архитектурных особенностей вычислительных машин различных классов, архитектур вычислительных сетей, технического, информационного и программного обеспечения се-тей, функционирования (глобальных, структура И организация сетей региональных, ло-кальных), структур И характеристик систем телекоммуникаций.

Дисциплина предназначена для получения знаний, необходимых для решения следу-ющих профессиональных задач (в соответствии с видами деятельности):

Производственно-технологическая деятельность

- Сбор и анализ исходных данных вычислительных технологий
- · Разработка проектной и рабочей документации, оформление отчетов по закон-ченным проектно-конструкторским работам;
- · контроль соответствия разрабатываемых проектов и технической документа-ции стандартам, техническим условиям и другим нормативным документам.

Организационно-управленческая деятельность

- · Организационно-правовое обеспечение деятельности по получению, накопле-нию, обработке, анализу, использованию информации и защите объектов информати-зации, информационных технологий и ресурсов;
- · Разработка и контроль эффективности осуществления системы мер по форми-рованию и использованию информационных ресурсов, систем вычислительных тех-нологий и сетей;
- · Организация работы малых групп и коллективов исполнителей, сформиро-ванных для решения конкретных профессиональных задач.

2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ПК-5 - Способен применять современные вычислительные средства, автоматизированные системы и цифровые технологии, экономикоматематические модели и методы для стратегического планирования перевозками на автотранспорте.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- современные достижения вычислительной техники (вычислительные машины, си-стемы и сети телекоммуникаций);
- характеристики процессов сбора, передачи, обработки и накопления информации;
- технические и программные средства реализации информационных процессов;
- современные операционные среды и области их и эффективного применения.

Уметь:

- -использовать современные системные программные средства: операционные систе-мы, операционные оболочки, обслуживающие сервисные про¬граммы;
- -использовать сетевые программные и технические средства информационных си-стем в предметной области.

Владеть:

- начальным уровнем по использованию сетевых программных средств информаци-онных систем в предметной области;
- способностью принимать участие в создании и управлении ИС на всех этапах жиз-ненного цикла.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 3 з.е. (108 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

		Количество	
Тип учебных занятий	часов		
	Всего	Сем. №8	
Контактная работа при проведении учебных занятий (всего):	50	50	
В том числе:			
Занятия лекционного типа	30	30	
Занятия семинарского типа	20	20	

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 58 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

$N_{\underline{0}}$	Томотуме намичения и разделий / утотума са напучания	
Π/Π	Тематика лекционных занятий / краткое содержание	
1	Тема 1. ОСНОВЫ ФУНКЦИОНИРОВАНИЯ ВЫЧИСЛИТЕЛЬНЫХ МАШИН Содержание учебного материала: Физические основы вычислительных процессов. Основы построения и функционирования вычислительных машин: общие принципы построения и архитектуры вычислительных машин, информационно-логические основы вычислительных машин, их функциональная и структурная организация, память, процессоры, каналы и интерфейсы ввода вывода, периферийные устройства, режим работы, программное обеспечение. Тема 2. АРХИТЕКТУРНЫЕ ОСОБЕННОСТИ И ОРГАНИЗАЦИЯ ФУНКЦИОНИРОВАНИЯ ВЫЧИСЛИТЕЛЬНЫХ МАШИН	
	Архитектурные особенности и организация функционирования вычислительных машин различных классов: многомашинные и многопроцессорные вычислительные системы, типовые вычислительные структуры и программное обеспечение, режимы работы. Тема 3. ВЫЧИСЛИТЕЛЬНЫЕ СЕТИ Классификация и архитектура вычислительных сетей, техническое, информационное и	

№ п/п	Тематика лекционных занятий / краткое содержание
	программное обеспечение сетей, структура и организация функционирования сетей (глобальных, региональных, локальных).
	Тема 4. СИСТЕМЫ ТЕЛЕКОММУНИКАЦИЙ Структура и характеристики систем телекоммуникаций: коммутация и маршрутизация телекоммуникационных систем, цифровые сети связи, электронная почта.
	Тема 5. ПЕРСПЕКТИВЫ РАЗВИТИЯ ВЫЧИСЛИТЕЛЬНЫХ СРЕДСТВ. Эффективность функционирования вычислительных машин, систем и сетей телекоммуникаций; пути ее повышения. Перспективы развития вычислительных средств. Технические средства человеко-машинного интерфейса.

4.2. Занятия семинарского типа.

Лабораторные работы

№	Наименование лабораторных работ / краткое содержание		
п/п			
1	Лабораторная работа 1. Архитектура персонального компьютера. В результате выполнения лабораторной работы студент получает знания об архитектуре ПК, состав и характеристика функциональных модулей ПК.		
	Лабораторная работа 2. Тестирование функциональных модулей персонального компьютера. В результате выполнения лабораторной работы студент получает навыки технических характеристик основной памяти, внешних запоминающих устройств, микропроцессора.		
	Лабораторная работа 3. Сетевая адресация. В результате выполнения лабораторной работы студент получит навыки определения сетевых настроек компьютера, определение используемых на компьютере TCP портов, тестирование работы компьютерной сети.		
	Лабораторная работа 4. Сервер доменных имён. В результате выполнения лабораторной работы студент получит навык определения IP-адреса всех DNS серверов, обслуживающих доменную зону.		
	Лабораторная работа 5. Локальная вычислительная сеть. В результате выполнения лабораторной работы студент получит практические навыки создание локальной компьютерной сети.		
	Лабораторная работа 6. IP-адресация. В результате выполнения лабораторной работы студент получит практические навыки вычисления адресного пространства компьютерной сети и двоичная сетевая арифметика.		
	Лабораторная работа 7. Корпоративная сеть. В результате выполнения лабораторной работы студент получит навыки создание проекта компьютерной сети офисного здания, выбор сетевого оборудования и экономическое обоснование проекта.		

Практические занятия

№	T	
Π/Π	Тематика практических занятий/краткое содержание	
1	Практическая работа 1. Архитектура персонального компьютера. В результате выполнения практической работы студент получает знания об архитектуре ПК, состав и характеристика функциональных модулей ПК.	
	Практическая работа 2. Тестирование функциональных модулей персонального компьютера. В результате выполнения практической работы студент получает навыки технических характеристик основной памяти, внешних запоминающих устройств, микропроцессора.	
	Практическая работа 3. Сетевая адресация. В результате выполнения практической работы студент получит навыки определения сетевых настроек компьютера, определение используемых на компьютере TCP портов, тестирование работы компьютерной сети.	
	Практическая работа 4. Сервер доменных имён. В результате выполнения практической работы студент получит навык определения IP-адреса всех DNS серверов, обслуживающих доменную зону.	
	Практическая работа 5. Локальная вычислительная сеть. В результате выполнения практической работы студент получит практические навыки создание локальной компьютерной сети.	
	Практическая работа 6. IP-адресация. В результате выполнения практической работы студент получит практические навыки вычисления адресного пространства компьютерной сети и двоичная сетевая арифметика.	
	Практическая работа 7. Корпоративная сеть. В результате выполнения практической работы студент получит навыки создание проекта компьютерной сети офисного здания, выбор сетевого оборудования и экономическое обоснование проекта.	

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	Работа с лекционным материалом
2	Подготовка к лабораторным работам
3	Выполнение курсовой работы.
4	Подготовка к промежуточной аттестации.
5	Подготовка к текущему контролю.

4.4. Примерный перечень тем курсовых работ

- 1. Первые информационные сети. История развития.
- 2. Стандарты сетей передачи данных
- 3. Теоремы Найквиста и Шеннона.

- 4. Понятия информационной сети
- 5. Открытая система ISO/OSI.
- 6. Стеки протоколов.
- 7. Управление каналом обмена данными.
- 8. Канальный уровень в локальной сети.
- 9. FDDI.
- 10. ATM.
- 11. Frame Relay.
- 12. Ethernet.
- 13. Типовые топологии.
- 14. Маршрутизация.
- 15. Коммутация каналов.
- 16. Коммутация пакетов.
- 17. Коммутация сообщений.
- 18. Internet-протоколы.
- 19. Организация сетей Интернет/Интранет.
- 20. Проектирование информационных сетей.
- 21. Выбор применяемой технологии в информационной сети.
- 22. Разработка плана адресации в информационной сети.
- 23. Безопасность сетей передачи данных.
- 24. VPN-сети.
- 25. Типовые атаки на службы и протоколы современных сетей и методы противодействия.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Телекоммуникационные сети и устройства: учебное по-	Библиотека РУТ
	собие / - Издательство: Интернет - Университет Инфор-	
	мационных Технологий (ИНТУИТ),БИНОМ. Лаборато-	
	рия знаний: Mосква – 2013. 320 c.	

2	Локальные сети и интернет: учебное пособие / - Изда-	Библиотека РУТ
	тельство: Интернет-Университет Информационных Тех-	
	нологий (ИНТУИТ): Москва, 2009. 170 с. (ЭБС	
	iprbookshop. ru)	
3	Синхронные телекоммуникационные системы и транс-	Библиотека
	портные сети: учебное пособие /, - Издательство:	РУТ/электронный
	Учебно-методический центр по образованию на	pecypc
	железнодорож-ном транспорте: Москва, 2012. 288 с. (ЭБС	
	iprbookshop. ru)	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Современные профессиональные базы данных и информационные справочные системы не требуются.

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Программное обеспечение не требуется

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Для проведения аудиторных занятий и самостоятельной работы требуются:

- · Рабочее место преподавателя с персональным компьютером, подключённым к сетям IN-TERNET
- · Специализированная лекционная аудитория с мультимедиа аппаратурой и интерактив-ной доской.
- · Компьютерный класс с кондиционером. Рабочие места студентов в компьютерном клас-се, подключённые к сетям INTERNET

Для проведения лабораторных работ:

- · компьютерный класс; кондиционер; компьютеры с минимальными требованиями Pentium 4, ОЗУ 4 ГБ, HDD 100 ГБ, USB 2.0.
- · В случае проведении занятий с применением электронного обучения и дистанционных образовательных технологий необходимо наличие компьютерной техники, для органи-зации коллективных и индивидуальных форм общения педагогических работников со студентами, посредством используемых средств коммуникации.

Допускается замена оборудования его виртуальными аналогами.

9. Форма промежуточной аттестации:

Зачет в 8 семестре.

Курсовая работа в 8 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы

Доцент, к.н. кафедры «Вычислительные системы, сети и

информационная безопасность»

Голдовский Яков Михайлович

Лист согласования

Заведующий кафедрой УЭРиБТ

Заведующий кафедрой ВССиИБ

Председатель учебно-методической

комиссии

А.Ф. Бородин

Б.В. Желенков

Н.А. Клычева