МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 27.03.04 Управление в технических системах, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Вычислительные машины, системы и сети

Направление подготовки: 27.03.04 Управление в технических системах

Направленность (профиль): Системы, методы и средства цифровизации и

управления

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 4196

Подписал: заведующий кафедрой Желенков Борис

Владимирович

Дата: 04.06.2025

1. Общие сведения о дисциплине (модуле).

Целями освоения дисциплины (модуля) являются:

- формирование компетенции по основным разделам цифровой схемотехники
- формирование целостных представлений о принципах построения и организации современных вычислительных машин и изучение основ синтеза вычислительных устройств.

Основными задачами дисциплины (модуля) являются:

- ознакомление с основными принципами схемотехнической реализации цифровых устройств и изучение методов анализа вычислительных электронных схем на цифровых микросхемах;
- ознакомление с внутренней организацией и основными характеристиками различных типов ЭВМ, а также входящих в их состав устройств;
- изучение принципов структурной и архитектурной организации современных микропроцессорных средств обработки информации.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ПК-8 - Способен производить расчеты и проектирование отдельных блоков, компонент и устройств систем автоматизации и управления и выбирать стандартные средства автоматики, измерительной и вычислительной техники для проектирования систем автоматизации и управления в соответствии с техническим заданием.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- -современные элементы архитектуры вычислительных систем и особенности их использования;
- понимать принципы организации и построения вычислительной техники.

Уметь:

-анализировать работу электронных вычислительных схем.

Владеть:

- -навыками работы с компьютером как инструментом для преобразования информации;
- способами оценки технических характеристик функциональных устройств современных ЭВМ с различной архитектурной организацией.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 3 з.е. (108 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
	Всего	Семестр №5
Контактная работа при проведении учебных занятий (всего):		32
В том числе:		
Занятия лекционного типа	16	16
Занятия семинарского типа	16	16

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 76 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

No				
п/п	Тематика лекционных занятий / краткое содержание			
1	Логические элементы, применение и принцип работы			
	Рассматриваемые вопросы:			
	- Представление информации физическими сигналами;			
	- Транзисторный ключ;			
	- Булевы функции и синтез комбинационных схем;			
	- Базовые логические элементы.			
2	Типовые комбинационные устройства			
	Рассматриваемые вопросы:			
	- Дешифратор, принцип работы и применение;			
	- Мультиплексор, принцип работы и применение;			
	- Сумматор, принцип работы и применение;			
	- АЛУ, принцип работы и применение.			
3	Основы работы схем памяти			
	Рассматриваемые вопросы:			
	- Бистабильная ячейка;			
	- Асинхронный RS-триггер;			
	- Синхронный RS-триггер.			
4	Реализация многоразрядной памяти			
	Рассматриваемые вопросы:			
	- Синхронный D-триггер;			
	- Регистры;			
	- Операции на регистрах;			
	- Управление выдачей. Z-состояние.			
5	Реализация электронной схемы обработки информации			
	Рассматриваемые вопросы:			
	- Электронные компоненты схемы;			
	- Принцип работы схемы			
	- Реализация операций обработки.			
6	Общие принципы организации вычислительной машины			
	Рассматриваемые вопросы:			
	- Понятие ЭВМ; Класомическая ЭВМ;			
	- Классическая ЭВМ;			
	- Принцип фон-Неймана, основные компоненты ЭВМ Теорема о декомпозиции (теорема Глушкова).			
7				
'				
8				
	- Классификация памяти;			
	- Многоуровневая организация памяти.			
8				

4.2. Занятия семинарского типа.

Лабораторные работы

№ п/п	Наименование лабораторных работ / краткое содержание			
1	Интерактивное изучение работы логических вентилей			
	В результате выполения работы на моделях изучаются основные комбинационные схемы мелкой логики.			
2	Интерактивное изучение работы комбинационных схем			
	В результате выполения работы на моделях изучаются дешифраторы, мультиплексоры.			
3	Интерактивное изучение работы комбинационных схем (продолжение)			
	В результате выполения работы на моделях изучаются основные преобразователи кодов.			
4	Интерактивное изучение работы цифровых узлов и триггерных схем			
	В результате выполения работы на моделях изучаются цифровые узлы на комбинационных схемах мелкой логики.			
5	Интерактивное изучение работы цифровых узлов и триггерных схем(продолжение)			
	В результате выполения работы на моделях изучаются основные триггерные схемы (асинхронные триггеры).			
6	Интерактивное изучение работы схем с памятью			
	В результате выполения работы на моделях изучаются промышеленные тригтеры и регистры.			
7	Интерактивное изучение работы схем с памятью(продолжение)			
	В результате выполения работы на моделях изучаются промышеленные триггеры и регистры.			
8	Интерактивное изучение работы схем с тремя состояниями			
	В результате выполения работы на моделях изучаются шинные схемы.			

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	Работа с лекционным материалом.
2	Работа с учебной литературой из приведенных источников.
3	Подготовка к лабораторным работам.
4	Подготовка к промежуточной аттестации.
5	Подготовка к текущему контролю.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ π/π	Библиографическое описание	Место доступа
1	Шустов, М. А. Цифровая схемотехника. Основы	Электронный ресурс:
	построения / М. А. Шустов СПб : Наука и	https://e.lanbook.com/book/109408
	Техника, 2018 320 с ISBN 978-5-94387-875-6	(дата обращения: 03.04.2024)
		Текст электронный.
2	Шустов, М. А. Цифровая схемотехника. Практика	Электронный ресурс:
	применения / М. А. Шустов СПб : Наука и	https://e.lanbook.com/book/109409
	Техника, 2018 432 с ISBN 978-5-94387-876-3	(дата обращения: 03.04.2024)
	,	Текст электронный.

3	Дэвид, М. Х. Цифровая схемотехника и
	архитектура компьютера / М. Х. Дэвид, Л. Х.
	Сара М: ДМК Пресс, 2017 792 с ISBN 978-
	5-97060-522-6.

Электронный ресурс: https://e.lanbook.com/book/97336 (дата обращения: 03.04.2024). - Текст электронный.

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Форум специалистов по информационным технологиям http://citforum.ru/

Интернет-университет информационных технологий http://www.intuit.ru/

Электронная библиотека МИИТ: http://library.miit.ru

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Для проведения занятий необходима специализированная лекционная аудитория с мультимедиа аппаратурой. Компьютер должен быть обеспечен лицензионными программными продуктами:

Foxit Reader/Acrobat Reader

Microsoft Windows.

Microsoft Office.

На рабочие места должны быть установлены программная разработка кафедры «Вычислительные системы и сети» «Обучающая система «Chip Explorer»

- 8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).
- Учебная аудитория для проведения занятий лекционного типа, групповых и индивидуальных консультаций.

Проектор для вывода изображения на экран для студентов, акустическая система, место для преподавателя оснащенное компьютером (CP UCorei3, 8GBRAM, 1Tb HDD, GeForce GTSeries). Аудитория подключена к сети Интернет.

- Учебная аудитория для проведения лабораторных занятий

25 персональных компьютеров (процессор intelPentium 2.3 Ghz, 1 Гб оперативной памяти).

-В случае проведении занятий с применением электронного обучения и дистанционных образовательных технологий необходимо наличие компьютерной техники, для организации коллективных и индивидуальных форм общения педагогических работников со студентами, посредством используемых средств коммуникации.

Допускается замена оборудования его виртуальными аналогами.

9. Форма промежуточной аттестации:

Зачет в 5 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

старший преподаватель кафедры «Вычислительные системы, сети и информационная безопасность»

А.В. Абрамов

Согласовано:

Заведующий кафедрой УиЗИ Л.А. Баранов

Заведующий кафедрой ВССиИБ Б.В. Желенков

Председатель учебно-методической

комиссии С.В. Володин