МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 26.03.03 Водные пути, порты и гидротехнические сооружения, утвержденной первым проректором РУТ (МИИТ)

Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Гидравлика сооружений и русловых процессов

Направление подготовки: 26.03.03 Водные пути, порты и

гидротехнические сооружения

Направленность (профиль): Проектирование, строительство, эксплуатация

водных путей и гидротехнических

сооружений

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 1054812

Подписал: заведующий кафедрой Сахненко Маргарита

Александровна

Дата: 30.10.2025

1. Общие сведения о дисциплине (модуле).

Целями освоения дисциплины (модуля) являются:

- изучение студентами речных и гидродинамических процессов гидротехнических сооружений и гидродинамических процессов, происходящих в них;
 - изучение студентами русловых процессов и методов их расчета;
- изучение студентами режимов течения воды и воздействий на гидротехнические сооружения.

Задачами дисциплины (модуля) являются:

- формирование навыков расчета и конструирования гидротехнических сооружений;
- формирование навыков проектирования гидротехнических сооружений с применением гидродинамических расчетов режимов течения аналитическими и численными методами.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-6** Способен организовывать работу и управлять коллективом производственного подразделения и организации, осуществляющих деятельность в области строительства, реконструкции и эксплуатации сооружений водного транспорта;
- **ПК-1** Способен к организации проведения работ по инженерным изысканиям, обследованию и ремонту гидротехнических сооружений водного транспорта;
- **ПК-2** Способен к организации и контролю технической эксплуатации, качества ремонта, реконструкции и модернизации гидротехнических сооружений водного транспорта.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- как осуществлять проектирование гидротехнических сооружений водного транспорта;
- нормативную базу в области содержания внутренних водных путей, судоходных и портовых сооружений водного транспорта;
 - как принимать решения в профессиональной сфере, используя

теоретические основы и нормативную базу в области содержания внутренних водных путей, судоходных и портовых сооружений водного транспорта.

Уметь:

- планировать, организовать и управлять путевым хозяйством на водном транспорте;
- участвовать в проектировании объектов инфраструктуры водного транспорта;
- участвовать в подготовке расчетного, технико-экономического обоснования и проектной документации.

Владеть:

- методами анализа проектной и эксплуатационной нормативнотехнической документации гидротехнических сооружений и водных путей;
- методами разработки проектной и эксплуатационной нормативнотехнической документации гидротехнических сооружений и водных путей;
- способностью к организации проведения работ по инженерным изысканиям, обследованию и ремонту гидротехнических сооружений водного транспорта.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 4 з.е. (144 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
	Всего	Семестр №7
Контактная работа при проведении учебных занятий (всего):	64	64
В том числе:		
Занятия лекционного типа	16	16
Занятия семинарского типа	48	48

3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении

промежуточной аттестации составляет 80 академических часа (ов).

- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

Ma			
No	Тематика лекционных занятий / краткое содержание		
п/п	трино тодоржино		
1	Движение жидкости в открытых руслах.		
	Рассматриваемые вопросы:		
	- равномерное безнапорное движение;		
	- формулы Шези;		
	-шероховатость стенок канала;		
	-квадратичная область сопротивления;		
	- формула Павловского;		
	- гидравлически наивыгоднейший профиль.		
2	Три основные задачи расчета каналов.		
	Рассматриваемые вопросы:		
	- определение расхода канала;		
	- определение уклона дна канала;		
	- определение размеров поперечного сечения канала.		
3	Ограничение скоростей движения воды при расчете каналов.		
	Рассматриваемые вопросы:		
	- максимальная неразмывающая скорость;		
	- минимальная незаиливающая скорость;		
	- критическая скорость движения смесей, содержащих твердые тяжелые частицы.		
4	Безнапорные трубы, туннели и каналы.		
	Рассматриваемые вопросы:		
	- неполное заполнение сечения;		
	- расходная характеристика безнапорного канала;		
	- скоростная характеристика безнапорного канала.		
5	Неравномерное установившееся течение в открытых руслах.		
	Рассматриваемые вопросы:		
	- неравномерное течение в призматическом канале;		
	- неравномерное течение в непризматическом канале;		
	- дифференциальное уравнение неравномерного движения;		
	- первая форма основного дифференциального уравнения плавно изменяющегося движения жидкости		
	в открытом русле или канале;		
	- вторая форма основного дифференциального уравнения установившегося плавно изменяющегося		
	движения жидкости в открытом русле или канале.		

$N_{\underline{0}}$	Taylorus 7 ayyyy 2 ayyr 2 7 ymar 2 2 a 7 am 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
п/п	Тематика лекционных занятий / краткое содержание	
6	Построение кривой свободной поверхности потока.	
	Рассматриваемые вопросы:	
	- соотношение сил инерции к силам тяжести;	
	- безразмерный параметр кинетичности, число Фруда;	
	- основное дифференциальное уравнение неравномерного движения при прямом уклоне;	
	- основное дифференциальное уравнение неравномерного движения при горизонтальном дне;	
	- основное дифференциальное уравнение неравномерного движения при обратном уклоне.	
7	Критическая глубина потока.	
	Рассматриваемые вопросы:	
	- гидравлический прыжок, водопад;	
	- спокойный поток, бурный поток	
	- удельная энергия сечения, прыжковая функция.	
8	Интегрирование дифференциального уравнения плавно изменяющегося движения в	
	призматическом канале.	
	Рассматриваемые вопросы:	
	- метод Бахметьева;	
	- метод Павловского.	

4.2. Занятия семинарского типа.

Лабораторные работы

No			
	Наименование лабораторных работ / краткое содержание		
п/п			
1	Задачи по расчету каналов.		
	В результате выполнения лабораторной работы студент получает навыки расчета расхода канала,		
	определения уклона дна канала, определения размеров поперечного сечения канала.		
2	Коэффициент Шези для шероховатых русел.		
	В результате выполнения лабораторной работы студент получает навык расчетов течения жидкости в		
	трубах и каналах с использованием коэффициента Шези.		
3	Расчет сопряженных глубин.		
	В результате выполнения лабораторной работы студент получает навык определения сопряженных		
	глубин для течения жидкости в реках и каналах.		
4	Течения в каналах.		
	В результате выполнения лабораторной работы студент получает навыки расчета равномерных и		
	неравномерных течений жидкости в реках и каналах.		
5	Водосливы с тонкой стенкой.		
	В результате выполнения лабораторной работы студент получает навыки расчета водосливов с тог		
	стенкой.		
6	Водосливы с широким порогом.		
	В результате выполнения лабораторной работы студент получает навыки расчета водосливов с		
	широким порогом и начального участка быстротока.		
7	Водосливы с практическим профилем.		
	В результате выполнения лабораторной работы студент получает навыки расчета водосливов с		
	практическим профилем, знакомится с таблицей координат Кригера - Офицерова.		
8	Определение расхода и режима движения воды в нижнем бьефе водослива.		
	В результате выполнения лабораторной работы студент получает навыки определения расхода и		
	режима движения воды в нижнем бьефе водослива.		

Практические занятия

№ п/п	Тематика практических занятий/краткое содержание	
1	Совершенный гидравлический прыжок.	
	В результате выполнения практической работы студент получает навыки расчета длины	
	гидравлического прыжка.	
2	Водобойная стенка.	
	В результате выполнения практической работы студент получает навыки расчета водобойной стенки.	
3	Расчет сопряжения бьефов судоходного шлюза.	
	В результате выполнения практической работы студент получает навыки расчета сопряжения бьефов	
	судоходного шлюза.	
4	Определение параметров заиления водохранилища.	
	В результате выполнения практической работы студент получает навыки расчетов по заилению	
	водохранилища.	

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	Работа с конспектом лекций, изучение литературы.
2	Подготовка к лабораторным работам.
3	Подготовка к практическим занятиям.
4	Подготовка к промежуточной аттестации.
5	Подготовка к текущему контролю.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Рс. И. Нигматулин, А. А. Соловьев.	Библиотека АВТ, 22 экз.
	Физическая гидромеханика: учебное	
	пособие. — М.: ГЭОТАР, 2005. — 512 с. — ISBN 5-9231-0475-X.	
2	Нестеров, М. В. Гидротехнические сооружения: учебник / М. В. Нестеров. — 2-е изд., испр. и доп. — Москва: ИНФРА-М, 2022. — 601 с.: ил. — (Высшее образование: Бакалавриат) ISBN 978-5-16-010306-8.	https://znanium.com/catalog/product/1815909 (дата обращения: 18.02.2025). — Текст : электронный
3	Соловьев А.А. Сборник задач по гидромеханике: учебное пособие. Москва: Альтаир - МГАВТ, 2009 - 162 с.	Библиотека АВТ, 50 экз.
4	СП 38.13330.2018. Свод правил. Нагрузки и воздействия на гидротехнические сооружения (волновые, ледовые и от	https://docs.cntd.ru/document/553863434 (дата обращения: 18.02.2025). — Текст : электронный

	судов).	
5	СП 58.13330.2019. Свод правил. Гидротехнические сооружения. Основные	https://docs.cntd.ru/document/564542210 (дата обращения: 18.02.2025. — Текст:
	положения.	электронный
6	Инженерная 3D-компьютерная графика в 2	https://urait.ru/book/inzhenernaya-3d-
	т. Том 1 : учебник и практикум для вузов /	kompyuternaya-grafika-v-2-t-tom-1-470887
	А. Л. Хейфец, А. Н. Логиновский, И. В.	(дата обращения: 18.02.2025). — Текст:
	Буторина, В. Н. Васильева; под редакцией	электронный
	А. Л. Хейфеца. — 3-е изд., перераб. и доп.	
	 — Москва : Издательство Юрайт, 2021. — 	
	328 с. — (Высшее образование). — ISBN	
	978-5-534-02957-4.	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Официальный сайт РУТ (МИИТ) (https://www.miit.ru/).

Научно-техническая библиотека РУТ (МИИТ) (http:/library.miit.ru).

Образовательная платформа «Юрайт» (https://urait.ru/).

Общие информационные, справочные и поисковые системы «Консультант Плюс», «Гарант».

Электронно-библиотечная система издательства «Лань» (http://e.lanbook.com/).

Электронно-библиотечная система ibooks.ru (http://ibooks.ru/).

- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).
 - 1. Операционная система Microsoft Windows
 - 2. Офисный пакет приложений MS Office (Word, Excel, PowerPoint)
 - 3. Система автоматизированного проектирования Autocad
 - 4. Система автоматизированного проектирования Revit
- 5. При проведении занятий с применением электронного обучения и дистанционных образовательных технологий, могут применяться следующие средства коммуникаций: ЭИОС РУТ(МИИТ), Microsoft Teams, электронная почта, скайп, Telegram и т.п.
- 8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебные аудитории для проведения учебных занятий, оснащенные

компьютерной техникой и наборами демонстрационного оборудования.

Лабораторные работы проводятся на тренажерах:

- «Лабораторный комплекс исследования динамики донных отложений и наносов (Лабораторная установка по изучению механики жидкости)»;
 - «Гидравлический лоток-гидравлика сооружений и волновых явлений»;
- Типовой комплект учебного оборудования «Истечение жидкости из отверстий и насадков».
 - 9. Форма промежуточной аттестации:

Экзамен в 7 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

профессор, профессор, д.н. кафедры «Водные пути, порты и портовое оборудование» Академии водного транспорта

В.М. Овсянников

Согласовано:

Заведующий кафедрой ВППиПО

М.А. Сахненко

Председатель учебно-методической

комиссии А.А. Гузенко