МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 23.03.02 Наземные транспортно-технологические комплексы.

утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Детали машин

Направление подготовки: 23.03.02 Наземные транспортно-

технологические комплексы

Направленность (профиль): Стандартизация и метрология в транспортном

комплексе

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 3409

Подписал: заведующий кафедрой Карпычев Владимир

Александрович

Дата: 22.04.2022

1. Общие сведения о дисциплине (модуле).

Целями освоения дисциплины (модуля) являются:

-обеспечить подготовку студентов по основам механики, включающим знание общих методов расчетов на прочность и жесткость, познакомиться с критериями пластичности и разрушения, необходимых для участия в работах по расчету и проектированию деталей и узлов разрабатываемых и используемых средств измерений, испытаний и контроля в соответствии с техническими заданиями и использованием стандартных средств автоматизации проектирования и контроля.

-сформировать у студентов общекультурные и профессиональные компетенции в области теории прочности и жесткости..

Основными требованиями к уровню освоения дисциплины являются освоение основных законов механики и умение применять их при решении задач:

- составление расчетной схемы для конкретного объекта;
- выбор методов расчета на прочность и жесткость;
- выполнение расчетов на прочность и жесткость;
- применение на практике основ механики разрушения;
- использование полученных навыков при испытаниях.

2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-5** Способен принимать обоснованные технические решения, выбирать эффективные и безопасные технические средства и технологии при решении задач профессиональной деятельности;
- **ПК-10** Способен в составе коллектива исполнителей участвовать в разработке программ и методик испытаний наземных транспортнотехнологических машин и их технологического оборудования;
- **ПК-12** Способен в составе коллектива исполнителей участвовать в разработке технологической документации для производства, модернизации, эксплуатации и технического обслуживания наземных транспортнотехнологических машин и их технологического оборудования.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- разделы «Статика», «Кинематика», «Динамика» курса «Механика».

Владеть:

- составлением расчетной схемы для конкретного объекта и формулированием исходных данных.

Уметь:

- составлять и решать уравнения равновесия;
- определять динамические характеристики.
- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 6 з.е. (216 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество	
	часов	
	Всего	Сем.
		№4
Контактная работа при проведении учебных занятий (всего):	136	136
В том числе:		
Занятия лекционного типа	34	34
Занятия семинарского типа	102	102

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 80 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных

условиях, при проведении промежуточной аттестации.

4. Содержание дисциплины (модуля).

4.1. Занятия лекционного типа.

No	T	
п/п	Тематика лекционных занятий / краткое содержание	
1	Значение курса для инженерного образования.	
	Рассматриваемые вопросы:	
	- Основные положения теории прочности и жесткости;	
	- Силы внешние и внутренние;	
	- Понятие о деформациях;	
	- Понятие об упругом равновесии;	
	- Напряжения;	
	- Основные допущения сопромата.	
2	Экспериментальное испытание материалов	
	Рассматриваемые вопросы:	
	- Экспериментальное испытание материалов	
3	Одноосное растяжение (сжатие)	
	Рассматриваемые вопросы:	
	- Общие положения;	
	- Напряжения в поперечных сечениях стержня;	
	- Деформации и перемещения;	
	- Закон Гука;	
	- Построение эпюры продольной силы N;	
	- Построение эпюры напряжений, напряжения в площадках, наклоненных к поперечному сечению под	
	углом, (в косых площадках);	
	- Закон парности касательных напряжений;	
	- Расчеты на прочность и жесткость при растяжении (сжатии).	
4	Площадь сечения.	
	Рассматриваемые вопросы:	
	- Общие положения;	
	- Статический момент площади сечения относительно оси;	
	- Примеры определения статического момента относительно оси;	
	- Момент инерции сечения относительно оси и относительно центра;	
	- Преобразование осевого момента инерции при параллельном переносе оси;	
	- Примеры формул для вычислений геометрических характеристик.	
5	Напряженное состояние в точке:	
	Рассматриваемые вопросы:	
	- Напряженное состояние в точке: одноосное;	
	- Напряженное состояние в точке: плоское	
	- Напряженное состояние в точке: объемное.	
6	Сложный косой изгиб.	
	Рассматриваемые вопросы:	
	- Внутренние силовые факторы при изгибе;	
	- Типы опор балок, работающих на изгиб;	
	- Определение опорных реакций;	
	- Поперечная сила и изгибающий момент, эпюры;	
	- Метод сечений.	

$N_{\underline{0}}$	Тематика лекционных занятий / краткое содержание		
Π/Π			
7	Расчеты на прочность.		
	Рассматриваемые вопросы:		
	- Контактные напряжения смятия;		
	- Ядро сечения Внецентренное сжатие (растяжение).		
8	Чистый сдвиг:		
	Рассматриваемые вопросы:		
	- Чистый сдвиг и его особенности.		
9	Кручение бруса (вала) с круглым и кольцевым поперечными сечениями.		
	Рассматриваемые вопросы:		
	- Кручение бруса (вала) с круглым и кольцевым поперечными сечениями;		
	- Допущения. Построение эпюр крутящих моментов;		
	- Напряжения, деформации в поперечном сечении;		
	- Эпюры касательных напряжений, углов закручивания;		
	- Особенности кручения бруса кольцевого поперечного сечения и тонкостенного бруса;		
	- Условия прочности при кручении вала круглого и кольцевого поперечного сечения;		
	- Расчеты на прочность и жесткость при кручении валов круглого и кольцевого поперечного сечения.		
10	Эквивалентное напряжение.		
	Рассматриваемые вопросы:		
	- Гипотезы прочности;		
	- Пример расчета вала на изгиб с кручением.		
11	Прочность при циклически меняющихся нагрузках.		
	Рассматриваемые вопросы:		
	- Критерии прочности и разрушения.		

4.2. Занятия семинарского типа.

Лабораторные работы

№ п/п	Наименование лабораторных работ / краткое содержание	
1	Механики прочности	
	В результате выполнения лабораторной работы рассматриваются задачи механики прочности.	
2	Испытания материалов.	
	В результате выполнения лабораторной работы рассматриваются механизм образования деформаций.	
3	Напряжения в площадках.	
	В результате выполнения лабораторной работы рассматриваются напряжения в площадках,	
	наклоненных к поперечному сечению под углом, (в косых площадках).	
4	Момент инерции сечения относительно оси и относительно центра.	
	В результате выполнения лабораторной работы рассматриваются преобразование осевого момента	
	инерции при параллельном переносе оси.	
5	Напряженное состояние в точке.	
	В результате выполнения лабораторной работы рассматриваются напряженное состояние в точке:	
	одноосное, плоское, объемное	
6	Типы опор балок, работающих на изгиб.	
	В результате выполнения лабораторной работы рассматриваются определение опорных реакций,	
	поперечную силу и изгибающий момент, эпюры, а также метод сечений.	
7	Расчеты на прочность.	
	В результате выполнения лабораторной работы рассматриваются контактные напряжения смятия, а	
	также ядро сечения внецентренное сжатие (растяжение).	

№ п/п	Наименование лабораторных работ / краткое содержание	
8	Чистый сдвиг.	
	В результате выполнения лабораторной работы рассматриваются чистый сдвиг и его особенности.	
9	Эквивалентное напряжение.	
	В результате выполнения лабораторной работы рассматриваются гипотезы прочности, пример расчета	
	вала на изгиб с кручением.	
10	Учет влияния концентрации.	
	В результате выполнения лабораторной работы рассматриваются учет влияния концентрации	
	напряжений, шероховатости, масштабного коэффициента и др. на предел выносливости.	

Практические занятия

No	Тематика практических занятий/краткое содержание	
п/п		
1	Задачи механики прочности	
	В результате выполнения практического задания рассматриваются значение курса для инженерн образования, основные положения теории прочности и жесткости, силы внешние и внутренние, понятие о деформациях, понятие об упругом равновесии, напряжения, а также основные допуще сопромата.	
2	Испытания материалов Механизм образования деформаций.	
	В результате выполнения практического задания рассматриваются экспериментальное испытание материалов.	
3	Растяжение (сжатие).	
	В результате выполнения практического задания рассматриваются одноосное растяжение (сжатие), общие положения. Напряжения в поперечных сечениях стержня. Деформации и перемещения. Закон Гука. Построение эпюры продольной силы N. Построение эпюры напряжений. Напряжения в площадках, наклоненных к поперечному сечению под углом, (в косых площадках). Закон парности касательных напряжений. Расчеты на прочность и жесткость при растяжении (сжатии).	
4 Геометрические характеристики плоских сечений.		
	В результате выполнения практического задания рассматриваются общие положения. Площадь сечения. Статический момент площади сечения относительно оси. Примеры определения статического момента относительно оси. Момент инерции сечения относительно оси и относительно центра. Преобразование осевого момента инерции при параллельном переносе оси. Примеры формул для вычислений геометрических характеристик.	
5	Напряженное состояние в точке.	
	В результате выполнения практического задания рассматриваются напряженное состояние в точке: одноосное, плоское, объемное	
6	Изгиб. Косой изгиб	
	В результате выполнения практического задания рассматриваются сложный косой изгиб. Внутренние силовые факторы при изгибе. Типы опор балок, работающих на изгиб. Определение опорных реакций. Поперечная сила и изгибающий момент, эпюры. Метод сечений.	
7	Внецентренное сжатие. (растяжение). В результате выполнения практического задания рассматриваются расчеты на прочность. Контактные напряжения смятия. Ядро сечения Внецентренное сжатие (растяжение).	
8	Сдвиг. Внецентренное сжатие. (растяжение). Расчеты на прочность. Контактные	
	напряжения смятия. Ядро сечения Внецентренное сжатие (растяжение).	
	В результате выполнения практического задания рассматриваются чистый сдвиг и его особенности	
9	Кручение	
	В результате выполнения практического задания рассматриваются кручение бруса (вала) с круглым и кольцевым поперечными сечениями. Кручение бруса (вала) с круглым и кольцевым поперечными	

№ п/п	Тематика практических занятий/краткое содержание
	сечениями. Допущения. Построение эпюр крутящих моментов. Напряжения, деформации в поперечном сечении. Эпюры касательных напряжений, углов закручивания. Особенности кручения бруса кольцевого поперечного сечения и тонкостенного бруса. Условия прочности при кручении вала круглого и кольцевого поперечного сечения. Расчеты на прочность и жесткость при кручении валов круглого и кольцевого поперечного сечения.
10	Гипотезы прочности В результате выполнения практического задания рассматриваются эквивалентное напряжение. Гипотезы прочности. Пример расчета вала на изгиб с кручением.
11	Прочность при циклически меняющихся нагрузках. Критерии прочности и разрушения. В результате выполнения практического задания рассматриваются прочность при циклически меняющихся нагрузках. Критерии прочности и разрушения. Общие положения. Основные характеристики цикла и предел выносливости. Влияние конструктивных и технологических факторов на предел выносливости. Учет влияния концентрации напряжений, шероховатости, масштабного коэффициента и др. на предел выносливости. Критерии прочности и разрушения. Наука о прочности и разрушении. Прочность и сопротивление разрушению. Пластическое разрушение. Хрупкое разрушение. Усталостное разрушение. Критерии прочности и разрушения.

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	Подготовка к практическим занятиям
2	Изучение дополнительной литературы
3	Выполнение курсовой работы.
4	Подготовка к промежуточной аттестации.
5	Подготовка к текущему контролю.

4.4. Примерный перечень тем курсовых работ

Цель и задача исследования: закрепление пройденного материала и умение применить его при решении задачи применительно к конкретному объекту. Курсовой проект включает в свой состав набор задач по разделам курса.

- 1. Растяжение (сжатие). Построение эпюр продольной силы, нормальных напряжений, деформаций. Подбор поперечного сечения стержня из условия его прочности и жесткости.
- 2. Изгиб. Построение эпюр изгибающего момента поперечной силы, нормальных напряжений, касательных напряжений. Подбор поперечного сечения балки из условия его прочности по нормальным напряжениям. Построение эпюры касательных напряжений в заданном сечении.

- 3. Кручение. Построение эпюр крутящего момента, касательных напряжений, углов закручивания. Подбор поперечного сечения вала из условия его прочности и жесткости.
- 4. Расчет вала на сложное сопротивление (внецентренное растяжение (сжатие) и изгиб с кручением) с применением 3-ей и 4-ой гипотез прочности.

Предлагается 36 вариантов, которые различаются расчетными схемами, нагрузкой и геометрическими размерами.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Сопротивление материалов А.В. Александров, В.Д.	
	Потапов, Б.П. Державин; Под ред. А.В. Александрова	
	Высш. шк., 2000	
2	Теоретические основы прочности Кравченко Г.М., Андреев	НТБ МИИТ
	П.А. РУТ (МИИТ), 2013	
1	Избранные задачи и вопросы по сопротивлению	НТБ МИИТ
	материалов В.И. Феодосьев Физматлит, 1996	
2	Сопротивление материалов Г.С. Писаренко М.: «Наука»,	НТБ МИИТ
	1979	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Федеральный портал «Российское образование» http://www.edu.ru/;

Федеральный центр информационно-образовательных ресурсов (ФЦИОР) http://www.fcior.edu.ru/;

Федеральное хранилище «Единая коллекция цифровых образовательных ресурсов» http://school-collection.edu.ru/;

Электронно-библиотечная система Научно-технической библиотеки МИИТ- http://library.miit.ru/;

Научно-электронная библиотека - http://elibrary.ru/;

Поисковые системы: Yandex, Google, Mail.

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Для проведения лекционных занятий необходима специализированная

лекционная аудитория с мультимедиа аппаратурой и интерактивной доской.

Для проведения практических занятий необходимы компьютеры с рабочими местами в компьютерном классе. Компьютеры должны быть обеспечены стандартными лицензионными программными продуктами и обязательно программным продуктом Microsoft Office, не ниже Microsoft Office 2007 (2013).

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Для проведения аудиторных занятий и самостоятельной работы для освоения дисциплины используют:

- 1. Рабочее место преподавателя с персональным компьютером, подключённым к сетям INTERNET.
- 2. Специализированный учебный комплекс, интерактивной доской; мультимедийным оборудованием (акустическая система, микрофон).
- 3. Специализированный учебный класс, оснащённый персональными компьютерами Pentium (20 штук).
 - 9. Форма промежуточной аттестации:

Курсовая работа в 4 семестре.

Экзамен в 4 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы

Андреев Павел Александрович

Доцент, доцент, к.н. кафедры «Машиноведение, проектирование, стандартизация и сертификация»

Филимонов

Владимир Матвеевич

Лист согласования

Заведующий кафедрой МПСиС

В.А. Карпычев

Председатель учебно-методической

комиссии С.В. Володин