МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 15.03.06 Мехатроника и робототехника, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Диагностика и мониторинг электропривода и электрооборудования ПСЖД

Направление подготовки: 15.03.06 Мехатроника и робототехника

Направленность (профиль): Электрооборудование и электропривод

подвижного состава

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 610876

Подписал: заведующий кафедрой Григорьев Павел

Александрович

Дата: 12.07.2025

1. Общие сведения о дисциплине (модуле).

Целью изучения дисциплины (модуля) является:

- формирование у студентов теоретических знаний и практических навыков в области методов, средств и технологий диагностики, контроля и прогнозирования технического состояния электрооборудования и систем электропривода железнодорожного подвижного состава;
- подготовка к применению современных технологий мониторинга и систем предиктивного анализа в профессиональной деятельности.

Задачами изучения дисциплины (модуля) являются:

- изучить основные концепции, методы и нормативную базу технической диагностики;
- освоить методики выявления дефектов с применением современных средств контроля;
 - развить навыки обработки диагностических данных;
 - научиться применять технологии диагностики.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-13** Способен применять методы контроля качества изделий и объектов в сфере профессиональной деятельности.;
- **ПК-3** Способен осуществлять выполнение экспериментов и оформление результатов исследований и разработаток в области проектирования ПСЖД.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- основные методы технической диагностики;
- нормативную базу технической диагностики;
- типовые неисправности электрооборудования подвижного состава.

Уметь:

- проводить комплексную диагностику оборудования с интерпретацией данных;
 - работать с системами мониторинга;
 - прогнозировать состояние узлов и формировать рекомендации по ТО.

Владеть:

- навыками работы с диагностическими приборами и ПО;
- методами оформления технической документации;
- технологиями предиктивного анализа.
- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 3 з.е. (108 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
	Всего	Семестр №7
Контактная работа при проведении учебных занятий (всего):	48	48
В том числе:		
Занятия лекционного типа	32	32
Занятия семинарского типа	16	16

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 60 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

No	Т		
Π/Π	Тематика лекционных занятий / краткое содержание		
1	Введение в диагностику и мониторинг		
	Рассматриваемые вопросы: основные понятия и термины; цели и задачи диагностики; виды		
	диагностических мероприятий; нормативная база; современные тенденции в диагностике.		
2	2 Основы теории диагностики технических систем		
	Рассматриваемые вопросы: принципы диагностики; виды отказов и дефектов; методы обнаружения		
	неисправностей; математические модели диагностики; надежность и прогнозирование остаточного		
	pecypca.		
3	Методы и средства диагностики электроприводов		
	Рассматриваемые вопросы: электрические, механические и тепловые методы диагностики;		
	вибродиагностика; анализ токов и напряжений; тепловизионный контроль; современные		
	диагностические приборы.		
4	Диагностика тяговых электродвигателей		
	Рассматриваемые вопросы: основные неисправности ТЭД; методы контроля изоляции; диагностика		
	коллекторно-щеточного узла; анализ вибраций и шумов; термографический контроль.		
5	Диагностика преобразователей частоты и выпрямителей		
	Рассматриваемые вопросы: типовые неисправности силовой электроники; методы контроля		
	полупроводниковых приборов; диагностика конденсаторов и дросселей; анализ гармоник; тепловой		
	контроль.		
6	Мониторинг систем управления электроприводом		
	Рассматриваемые вопросы: диагностика микропроцессорных систем; анализ сигналов датчиков;		
	проверка алгоритмов управления; диагностика шин передачи данных; методы тестирования программного обеспечения.		
7			
_ ′	Диагностика аккумуляторных батарей и систем накопления энергии Рассматриваемые вопросы: методы контроля состояния АКБ; измерение внутреннего		
	сопротивления; анализ емкости и степени заряда; диагностика литий-ионных батарей;		
	прогнозирование срока службы.		
8	Диагностика вспомогательного электрооборудования		
	Рассматриваемые вопросы: проверка компрессоров, вентиляторов и насосов; диагностика систем		
	освещения; контроль цепей управления; анализ работы контакторов и реле; методы поиска		
	коротких замыканий.		
9	Встроенные системы диагностики и самодиагностики		
	Рассматриваемые вопросы: принципы встроенного мониторинга; архитектура бортовых		
	диагностических систем; стандарты OBD и CAN-шины; анализ кодов неисправностей;		
	интерпретация диагностических данных.		
10	Программное обеспечение для диагностики и анализа данных		
	Рассматриваемые вопросы: специализированные SCADA-системы; обработка сигналов и		
	спектральный анализ; нейросетевые методы диагностики; облачные платформы мониторинга; big		
	data в диагностике.		

4.2. Занятия семинарского типа.

Лабораторные работы

№ п/п	Наименование лабораторных работ / краткое содержание
1	Применение базовых методов диагностики электрооборудования
	В результате выполнения лабораторной работы студенты научатся применять электрические и
	тепловые методы контроля, анализировать параметры изоляции и сопротивления обмоток, а также
	интерпретировать результаты измерений для оценки технического состояния оборудования.

№ п/п	Наименование лабораторных работ / краткое содержание			
2	Вибродиагностика электроприводов			
	В результате выполнения лабораторной работы студенты освоят методики сбора вибросигналов с			
	электродвигателей, научатся выявлять дефекты подшипников и дисбаланса ротора с помощью			
	спектрального анализа, а также оформлять диагностические заключения.			
3	Диагностика тяговых электродвигателей			
	В результате выполнения лабораторной работы студенты получат навыки контроля коллекторно-			
	щеточного узла, анализа межвитковых замыканий, оценки состояния изоляции мегомметром и			
	термографического выявления перегрева.			
4	Анализ неисправностей силовых преобразователей			
	В результате выполнения лабораторной работы студенты научатся диагностировать			
	тиристорные/транзисторные модули, выявлять пробой конденсаторов, анализировать			
	гармонические искажения в цепях преобразователей частоты с использованием осциллографа.			
5	Мониторинг систем управления электроприводом			
	В результате выполнения лабораторной работы студенты освоят методы считывания данных с			
	САN-шин, диагностики датчиков положения ротора и тока, а также выявления ошибок в			
	алгоритмах управления через специализированное ПО.			
6	Оценка состояния аккумуляторных батарей			
	В результате выполнения лабораторной работы студенты научатся определять емкость АКБ,			
	измерять внутреннее сопротивление, анализировать кривые разряда/заряда и прогнозировать			
	остаточный ресурс литий-ионных батарей.			
7	Работа с диагностическим ПО и SCADA-системами			
	В результате выполнения лабораторной работы студенты приобретут навыки обработки сигналов в			
	специализированных программах, построения трендов параметров оборудования и нейросетевой			
	классификации дефектов.			

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	Изучение дополнительной литературы
2	Текущая подготовка к лабораторным работам
3	Подготовка к промежуточной аттестации.
4	Подготовка к текущему контролю.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Диагностика электрооборудования. Практикум: учебное пособие / А. А. Фефелов, А. А. Трубицын, Е. Ю. Грачев [и др.]. — Рязань: РГРТУ, 2024. — 84 с.	URL: https://e.lanbook.com/book/439742 (дата обращения: 12.07.2025) Текст: электронный.
2	Кириллов, Г. А. Эксплуатация электрооборудования: учебное пособие / Г. А.	URL: https://e.lanbook.com/book/231560

	Кириллов, Я. М. Кашин. — Краснодар : КубГТУ, 2015 — Часть 2 : Техническая диагностика и мониторинг технического состояния электрооборудования — 2015. — 203 с. — ISBN 978-5-8333-0558-4.	(дата обращения: 12.07.2025) Текст: электронный.
3	Панченко, В. Н. Техническая диагностика подвижного состава: учебное пособие / В. Н. Панченко. — Самара: СамГУПС, 2016. — 113 с.	URL: https://e.lanbook.com/book/130339 (дата обращения: 12.07.2025) Текст: электронный.
4	Серебряков, А. С. Техническая диагностика подвижного состава. Контроль главной изоляции тяговых электродвигателей: учебное пособие для вузов / А. С. Серебряков. — 2-е изд., стер. — Санкт-Петербург: Лань, 2024. — 292 с. — ISBN 978-5-507-51529-5.	URL: https://e.lanbook.com/book/422639 (дата обращения: 12.07.2025) Текст: электронный.
5	Бублик, В. В. Учебно-методическое пособие для изучения дисциплины "Техническая диагностика подвижного состава" : учебно-методическое пособие / В. В. Бублик, С. В. Швецов. — Омск : ОмГУПС, 2020 — Часть 2 : Диагностирование электрического и механического оборудования электропоездов — 2020. — 41 с.	URL: https://e.lanbook.com/book/165631 (дата обращения: 12.07.2025) Текст: электронный.

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Официальный сайт РУТ (МИИТ) (https://www.miit.ru/)

Научно-техническая библиотека РУТ (МИИТ) (http:/library.miit.ru)

Образовательная платформа «Юрайт» (https://urait.ru/)

Общие информационные, справочные и поисковые «Консультант Плюс» (http://www.consultant.ru/),

«Гарант» (http://www.garant.ru/),

Главная книга (https://glavkniga.ru/)

Электронно-библиотечная система издательства (http://e.lanbook.com/)

Электронно-библиотечная система ibooks.ru (http://ibooks.ru/)

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Microsoft Office (Word, Excel); SimInTech; LabVIEW.

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебные аудитории для проведения учебных занятий, оснащенные компьютерной техникой, наборами демонстрационного оборудования и стендами для выполнения лабораторных работ.

9. Форма промежуточной аттестации:

Зачет в 7 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, к.н. кафедры «Наземные транспортно-технологические средства»

П.А. Григорьев

Согласовано:

Заведующий кафедрой НТТС

П.А. Григорьев

Председатель учебно-методической

комиссии С.В. Володин