МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы специалитета по специальности 23.05.03 Подвижной состав железных дорог, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Динамика высокоскоростного подвижного состава

Специальность: 23.05.03 Подвижной состав железных дорог

Специализация: Высокоскоростной наземный транспорт

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 5214

Подписал: заведующий кафедрой Пудовиков Олег

Евгеньевич

Дата: 06.05.2025

1. Общие сведения о дисциплине (модуле).

Целями освоения дисциплины "Динамика высокоскоростного подвижного состава" являются:

- изучение принципов работы и устройства механической части высокоскоростного транспорта, условий работы её в эксплуатации

Задачами освоения дисциплины "Динамика высокоскоростного подвижного состава" являются:

- изучение способов поддержания её работоспособности в эксплуатации, методик анализа причин возможных неисправностей
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ПК-9 - Имеет навык выполнять обоснование параметров конструкции конструкций и систем подвижного состава высокоскоростного наземного транспорта.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

Знать методы расчета и оценки прочности сооружений и конструкций на основе знаний законов статики и динамики твердых тел

Уметь:

Уметь выполнять расчеты типовых элементов технологических машин и подвижного состава на прочность, жесткость и устойчивость, оценить динамические силы, действующие на детали и узлы подвижного состава, формировать нормативные требования к показателям безопасности, выполнять расчеты динамики подвижного состава и устройств оборудования подвижного состава

Владеть:

Владеть методами анализа и расчёта деталей узлов механической части, в том числе с применением современных компьютерных технологий

- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 2 з.е. (72

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Коли	Количество часов	
	Всего	Семестр №7	
Контактная работа при проведении учебных занятий (всего):	32	32	
В том числе:			
Занятия лекционного типа	16	16	
Занятия семинарского типа	16	16	

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 40 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

№ п/п	Тематика лекционных занятий / краткое содержание	
1	Системы рессорного подвешивания ЭПС	
	Основные виды систем рессорного подвешивания современного подвижного состава	
2	Принципы, положенные в основу схем рессорного подвешивания Физические законы и основные методы методы математического описания схем рессорного подвешивания	
3	Анализ характеристик элементов рессорного подвешивания и их изменений в процессе эксплуатации Оценка влияния режимов работы механической части в процессе движения экипажа на	
	характеристики элементов рессорного подвешивания	
4	Расчеты упругих и диссипативных элементов рессорного подвешивания	

№ п/п	Тематика лекционных занятий / краткое содержание	
	Методика расчета упругих и диссипативных элементов рессорного подвешивания	
5	Диссипативные элементы рессорного подвешивания и их характеристики	
	Характеристики, величины реакций, ограничения дисспитативных элементов рессорного подвешивания	
6	Узлы соединения колесных пар с рамой тележки	
	Схемы узлов буксовой ступени рессорного подвешивания	
7	Системы передачи сил тяги и торможения и их взаимодействие с рессорным	
	подвешиванием	
	Особенности устройств для передачи продольных сил во вторичной и первичной ступенях	
8	Конструкции рессорного подвешивания скоростного и высокоскоростного	
	подвижного состава	
	Системы передачи сил тяги и рессорное подвешивания высокоскоростного подвижного состава	

4.2. Занятия семинарского типа.

Лабораторные работы

- 10		
№ п/п	Наименование лабораторных работ / краткое содержание	
1	Лабораторная работа №1 Исследование рессорного подвешивания экипажей на	
	математических моделях	
	Расчет инерционных и геометрических параметров экипажа. Исследуется влияние принцип а	
	разделения масс на динамические нагрузки	
2	Лабораторная работа №2 Исследование моделей динамических систем при силовом и	
	кинематическом возмущении	
	Построение на ПЭВМ амплитудно-частотной характеристики вертикальных ускорения исследуемой	
	массы.Влияние демпфирования насистемы виброзащиты и виброизоляции.	
3	Лабораторная работа №3 Вичисление собственных частот и форм колебаний	
	динамических систем	
	Изучаются понятия собственных частот и форм колебаний динамических систем экипажей	
4	Лабораторная работа №4 Свободные и вынужденные колебания четрехосного	
	экипажа	
	Изучается экспериментальное определение параметров системы при опыте «сброс экипажа с	
	клиньев».	
5	Лабораторная работа №5 Определение соотношений величин демпфирования при	
	двхступенчатом рессорном подвешивании экипажа	
	Оценка влияния демпфирования на значения плавности хода и коэффициента динамики в диапазоне	
	скоростей от 100 до360 км/ч	
6	Лабораторная работа №6 Оценка влияния демпфирования на значения плавности	
	хода и коэффициента динамики в диапазоне скоростей от 100 до360 км/ч	
	Изучается влияние сложного возмущения со стороны пути на показатели плавности хода и	
	коэффициента динамики.	
7	Лабораторная работа №7 Исследование колебаний диночной колесной пары в	
	рельсовой колее	
	Изучается характер движения колесной пары и формулируется понятие критической скорости	
	экипажа.	

№ п/п	Наименование лабораторных работ / краткое содержание	
8	Изучается характер движения колесной пары и формулируется понятие критической	
	скорости экипажа.	
	Исследуются колебания тележки в рельсовой колее и влияние ее параметров на критическую скорость	
	движения в рельсовой колее	

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	Подготовка к лабораторным работам
2	Работа с литературой
3	Подготовка к промежуточной аттестации.
4	Подготовка к текущему контролю.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

$N_{\underline{0}}$	Γ	M
Π/Π	Библиографическое описание	Место доступа
1	Механическая часть тягового подвижного состава И.В. Бирюков; А.Н. Савоськин; Г.П. Бурчак; Под ред. И.В. Бирюкова Однотомное издание Транспорт , 1992	НТБ (уч.3); НТБ (уч.6); НТБ (фб.)
2	Электродинамическая левитация и линейные синхронные двигатели транспортных систем З.К. Сика, И.И. Куркалов, Б.А. Петров; Ред. В.П. Глухов; АН ЛатвССР, Физико-энергетический ин-т Однотомное издание Зинатне, 1988	НТБ (фб.)
3	Рыбников, Е. К. Основы механики подвижного состава: учебно-методическое пособие / Е. К. Рыбников, Н. И. Долгачев. — Москва: РУТ (МИИТ), 2019. — 68 с. — Текст: электронный // Лань: электронно-библиотечная система	https://e.lanbook.com/book/175574 (дата обращения: 29.04.2025). — Режим доступа: для авториз. пользователей.
4	Основы механики подвижного состава: учебное пособие: в 2 частях / В. В. Трофимович, И. И. Доронина, А. С. Слободенюк, Ю. А. Давыдов. — Хабаровск: ДВГУПС, 2023 — Часть 2 — 2023. — 98 с. — Текст: электронный // Лань: электроннобиблиотечная система	— URL: https://e.lanbook.com/book/433610 (дата обращения: 29.04.2025). — Режим доступа: для авториз. пользователей.
5	Рыбников, Е. К. Инженерные расчёты механических конструкций в программной среде SolidWorks : учебное пособие / Е. К. Рыбников, Т. О. Вахромеева,	URL: https://e.lanbook.com/book/175900 (дата обращения: 29.04.2025). — Режим доступа: для авториз.

С. В. Володин. — Москва : РУТ (МИИТ), 2020. —	пользователей. Режим доступа:
86 с. — Текст : электронный // Лань : электронно-	для авториз. пользователей.
библиотечная система	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

При изучении дисциплины используются следующие информационные технологии:

- мультимедийные пособия (на CD-дисках) при изучении конструкций механической части ЭПС;
- электронные копии инструкционных книг с описанием различного BCHT;
- каталоги по резинометаллическим элементам для подвижного состава (www.gmt-gmbh.de);
 - литература железнодорожной тематики (http://instructionsrzd.ucoz.ru/).
- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля):

- лицензионные стандартные средства Microsoft Office;
- математический пакет MathCad:
- пакет проектирования SolidWorks с модулем Sumulation; (https://www.solidworks.com/ru/product/students#:)
- специализированные лицензионные программные пакеты для моделирований движения железнодорожных экипажей по рельсовому пути «Универсальный механизм» (UM), ADAMS, Vi-Rail или авторские программы аналогичного назначения.
- 8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Лекционная аудитория, оснащенная компьютером для преподавателя, видеопроектором и экраном.

Аудитория для лабораторных работ оснащенная компьютерами для каждого студента с предустановленным программным обеспечением для

моделирования движения железнодорожных экипажей по рельсовому пути. Видеопроектор и экран.

9. Форма промежуточной аттестации:

Зачет в 7 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

профессор, профессор, к.н. кафедры «Электропоезда и локомотивы»

Е.К. Рыбников

Согласовано:

Заведующий кафедрой ЭиЛ

О.Е. Пудовиков

Председатель учебно-методической

комиссии

С.В. Володин