МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы специалитета по специальности 23.05.06 Строительство железных дорог, мостов и

транспортных тоннелей, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Динамика и устойчивость транспортных сооружений

Специальность: 23.05.06 Строительство железных дорог,

мостов и транспортных тоннелей

Специализация: Мосты

Форма обучения: Очно-заочная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 2153

Подписал: заведующий кафедрой Зылёв Владимир Борисович

Дата: 16.05.2022

1. Общие сведения о дисциплине (модуле).

Изучение дисциплины «Динамика и устойчивость сооружений» преследует цель подготовки инженеров, способных создавать строительные которые МОГУТ противостоять разнообразным конструкции, динамических воздействий (сейсмическое воздействие, ветровое воздействие, вибрационное воздействие, подвижная нагрузка, воздействие навала транспортных средств и т. д.). В части устойчивости сооружений задачей дисциплины является обучение будущих специалистов методам анализа устойчивости равновесия разнообразных систем. предполагается рассмотрение как чисто стержневых конструкций, так и систем, содержащих в качестве элементов стержни, пластины, оболочки и массивные тела.

Целью изучения дисциплины является так же воспитание специалистов, способных развивать и совершенствовать методы решения задач динамики и устойчивости в будущем.

2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ПК-18** Способен проводить научно-исследовательские и опытно-конструкторские разработки; моделировать и проводить расчетный анализ для проектных целей и обоснования надежности и безопасности объектов;
- **ПК-19** Способен проводить прикладные исследования в сфере инженерно-технического проектирования; осуществлять проведение работ по обработке и анализу научно-технической информации и результатов исследований.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

Знать принципы разработки отдельных узлов и конструкцию мостов в целом.

Уметь:

Уметь разрабатывать расчетные модели и составлять расчетные схемы сооружений.

Владеть:

Владеть методами расчёта и конструирования инженерных сооружений.

- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 2 з.е. (72 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

		Количество	
Тип учебных занятий	часов		
	Всего	Сем. №9	
Контактная работа при проведении учебных занятий (всего):	16	16	
В том числе:			
Занятия лекционного типа	8	8	
Занятия семинарского типа	8	8	

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 56 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

№	Тематика лекционных занятий / краткое содержание		
Π/Π	тематика лекционных занятии / краткое содержание		
1	Раздел 1 Динамика упругих систем. Основные виды динамических нагрузок и		
	воздействий. Свободные колебания системы с одной степенью свободы		
2	Раздел 2 Свободные колебания системы с несколькими степенями свободы		
3	Раздел 5 Вынужденные гармонические колебания системы с несколькими		
	степенями свободы. Определение движения системы по начальным условиям.		
	Теорема о взаимности перемещений		
4	Раздел 8 Распространение волн деформаций в упругой среде		
5	Раздел 12 Три вида равновесия. Три способа исследования устойчивости		
6	Раздел 13 Пример расчета сжато-изогнутого стержня		
7	Раздел 17 Устойчивость пластин		
8	Раздел 18 Метод конечных элементов для расчета на устойчивость		

4.2. Занятия семинарского типа.

Практические занятия

No			
п/п	Тематика практических занятий/краткое содержание		
	DADEEL A. H.		
1	РАЗДЕЛ 1 Динамика упругих систем. Основные виды динамических нагрузок и		
	воздействий. Свободные колебания системы с одной степенью свободы		
	Свободные колебания системы с одной степенью свободы		
2	РАЗДЕЛ 2 Свободные колебания системы с несколькими степенями свободы		
	Свободные колебания системы двумя степенями свободы		
3	РАЗДЕЛ 3 Энергетический метод определения частоты собственных колебаний.		
	Формула Рэлея		
	Определение частоты первой формы колебаний для балочных систем		
4	РАЗДЕЛ 4 Свойство ортогональности форм собственных колебаний		
	Определение форм и частот собственных колебаний для систем с двумя степенями свободы с		
	контролем ортогональности форм собственных колебаний		
5	РАЗДЕЛ 5 Вынужденные гармонические колебания системы с несколькими		
	степенями свободы. Определение движения системы по начальным условиям.		
	Теорема о взаимности перемещений		
	Определение амплитудных перемещений для систем с двумя степенями свободы при		
	гармонической нагрузке. Определение движения системы при заданных начальных скоростях точек		
6	РАЗДЕЛ 6 Учет сил внутреннего трения при колебаниях. Действие произвольной		
	нагрузки на систему с несколькими степенями свободы		
	Решение задач с использованием разложения движения по собственным формам колебаний		
7	РАЗДЕЛ 7 Расчеты на сейсмическое воздействие по нормам		
	Примеры расчета упругой системы на сейсмическое воздействие по нормам		
8	РАЗДЕЛ 8 Распространение волн деформаций в упругой среде		
	Задачи на теоремы взаимности для случая динамического поведения системы		
9	РАЗДЕЛ 9 Колебания системы с бесконечным числом степеней свободы		
	Расчет системы с несколькими степенями свободы на гармоническую нагрузку		

№	Т		
п/п	Тематика практических занятий/краткое содержание		
10	РАЗДЕЛ 10 Метод конечных элементов для определения частот и форм колебаний		
	упругих систем		
	Работа в дисплейном классе по определению частот и форм собственных колебаний по методу конечных элементов		
11	РАЗДЕЛ 11 Численные методы интегрирования уравнений движения для		
	нелинейных систем		
	Работа в дисплейном классе по численному решению нелинейных динамических задач		
12	Задачи на определение критических нагрузок для систем с одной степенью свободы		
13	РАЗДЕЛ 13 Пример расчета сжато-изогнутого стержня		
	Задачи на определение критической нагрузки для систем с двумя степенями свободы		
14	РАЗДЕЛ 14 Метод перемещений для расчета рам на устойчивость		
	Задачи на расчет рам на устойчивость по методу перемещений		
15	РАЗДЕЛ 15 Учет деформации сдвига при определении критической силы		
	Определение критических нагрузок с учетом деформации сдвига и для составных стержней		
16	РАЗДЕЛ 16 Энергетический метод определения критической силы в стержне.		
	Формула С.П. Тимошенко		
	Решение задач на использование формулы С.П. Тимошенко		
17	РАЗДЕЛ 17 Устойчивость пластин		
	Устойчивость плоской формы изгиба и устойчивость арок (использование метода конечных		
	элементов)		
18	РАЗДЕЛ 18 Метод конечных элементов для расчета на устойчивость		
	Применение численного метода для определения критической нагрузки с использованием		
	динамического метода анализа устойчивости		

4.3. Самостоятельная работа обучающихся.

$N_{\underline{0}}$	Вил самостоятали ной работи	
Π/Π	Вид самостоятельной работы	
1	Подготовка к практическим занятиям.	
2	Проработка конспекта лекций.	
3	Изучение учебной литературы из приведенных источников	
4	Работа над РГР 1 и 2	
5	Подготовка к промежуточной аттестации.	
6	Подготовка к текущему контролю.	

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

No	Free	Maana vaanvus
Π/Π	Библиографическое описание	Место доступа

1	Строительная механика. Динамика и устойчивость упругих систем. Книга 2 Александров А.В., Потапов В.Д., Зылев В.Б Высшая школа, 2008	НТБ МИИТ
2	Определение перемещений и внутренних усилий при динамическом действии нагрузки Зылев В.Б., Штейн А.В., Павленко П.В. Типография Ярославского филиала МИИТ, 2013	НТБ МИИТ
3	Вычислительные методы в нелинейной механике конструкций Зылев В.Б. НИЦ "Инженер", , 1999	НТБ МИИТ
4	Расчет стержневых систем методом конечных элементов с использованием комплекса MSC.PATRAN-NFSTRAN Косицын С.Б., Долотказин Д. Б. МИИТ, 2010	НТБ МИИТ
5	Расчет конструкций в MSC/NASTRAN for Windows Шимкович Д.Г. ДМК Пресс, 2001	НТБ МИИТ

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Студенты должны иметь возможность пользоваться сетью "ИНТЕРНЕТ" для получения электронных версий методических указаний.

- 1. http://library.miit.ru/ Учебные модули в электронной библиотеке НТБ МИИТ
- 2. http://e.lanbook.com/ Электронно-библиотечная система Издательство «Лань»
- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Студенты должны иметь возможность пользоваться сетью "ИНТЕРНЕТ" для получения электронных версий методических указаний.

- 1. http://library.miit.ru/ Учебные модули в электронной библиотеке НТБ МИИТ
- 2. http://e.lanbook.com/ Электронно-библиотечная система Издательство «Лань»
- 8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Конечно-элементный комплекс MSC.PATRAN-NFSTRAN.

Программа расчета вантово-стержневых систем, разработанная на кафедре строительная механика МИИТ В.Б. Зылевым, А.В. Штейном, реализующая явную схему решения динамических задач.

9. Форма промежуточной аттестации:

Зачет в 9 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы

Заведующий кафедрой, профессор, д.н. кафедры «Строительная механика»

Зылёв Владимир Борисович

Лист согласования

Заведующий кафедрой МиТ А.А. Пискунов

Заведующий кафедрой СМ В.Б. Зылёв

Председатель учебно-методической

комиссии М.Ф. Гуськова