МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА»

Кафедра «Электропоезда и локомотивы»

АННОТАЦИЯ К РАБОЧЕЙ ПРОГРАММЕ ДИСЦИПЛИНЫ

«Динамика систем»

Специальность: 23.05.03 – Подвижной состав железных дорог

Специализация: Высокоскоростной наземный транспорт

Квалификация выпускника: Инженер путей сообщения

Форма обучения: очная

Год начала подготовки 2018

1. Цели освоения учебной дисциплины

Цель преподавания дисциплины — изложение некоторых методов ана-литической механики, применяемых для исследования динамики дос-таточно сложных систем, представляющих собой модели реальных конструкций подвижного состава (п.с.) железных дорог. В связи с развитием и совершенствованием методов исследования динамических процессов в рельсовом подвижном составе, возникает необходимость конкретизировать и выделить отдельные важные для рассматриваемой специализации «Электрический транспорт железных дорог» вопросы механики. Настоящий курс должен подготовить студента к восприятию методов, используемых при описании статического и динамического состояния подвижного состава с использованием современной вычислительной техники.

Задачи дисциплины:

- -студент должен приобрести навыки выбора наиболее подходящего метода решения конкретных задач по исследованию движения сложных систем;
- -студент должен приобрести навыки разработки кинематических схем моделей подвижного состава;
- -уметь определить число степеней свободы и создать математическую модель п.с. путем составления систем дифференциальных уравнений;
- -уметь составить и решить уравнения движения всех видов подвижного состава;
- -овладеть методами исследования свободных и вынужденных колеба-ний моделей подвижного состава;
- -иметь опыт анализа результатов исследований и выбора на основании этого анализа необходимых параметров рессорного подвешивания.
- приобретение студентами навыков самостоятельной работы с науч-но-технической литературой по динамике п.с.

2. Место учебной дисциплины в структуре ОП ВО

Учебная дисциплина "Динамика систем" относится к блоку 1 "Дисциплины (модули)" и входит в его вариативную часть.

3. Планируемые результаты обучения по дисциплине (модулю), соотнесенные с планируемыми результатами освоения образовательной программы

Процесс изучения дисциплины направлен на формирование следующих компетенций:

ОПК-7	способностью применять методы расчета и оценки прочности
	сооружений и конструкций на основе знаний законов статики и динамики
	твердых тел, исследовать динамику и прочность элементов подвижного
	состава, оценивать его динамические качества и безопасность
ПК-13	способностью проводить экспертизу и анализ прочностных и
	динамических характеристик подвижного состава, их технико-
	экономических параметров, оценивать технико-экономические
	параметры и удельные показатели подвижного состава
ПК-19	способностью выполнять расчеты типовых элементов технологических
	машин и подвижного состава на прочность, жесткость и устойчивость,
	оценить динамические силы, действующие на детали и узлы подвижного
	состава, формировать нормативные требования к показателям
	безопасности, выполнять расчеты динамики подвижного состава и
	термодинамический анализ теплотехнических устройств и кузовов
	подвижного состава

4. Общая трудоемкость дисциплины составляет

3 зачетные единицы (108 ак. ч.).

5. Образовательные технологии

Преподавание дисциплины «Динамика систем» осуществляется в форме лекций, лабораторного практикума (лабораторных работ) и курсового проектирования. При реализации программы дисциплины «Динамика систем» используются следу-ющие образовательные технологии. Лекции проводятся в традиционной классно-урочной организационной форме по типу управления познавательной деятельностью и являются традиционными классически-лекционными (объяснительно-иллюстративными)-все 36 часов Лабораторные работы/практические занятия проводятся в форме электронного прак-тикума, с применением компьютерных симуляций, компьютерных конструкторов и тра-диционных технологий (18 ч.). Самостоятельная работа (49 ч.) подразумевает выполнение курсового проекта под руководством преподавателя (диалоговые технологии, проектные технологии), работу под руководством преподавателя в изучении специальных разделов дисциплины, подготовку к лабораторным работам. Оценка полученных знаний, умений и навыков основана на модульно-рейтинговой технологии. Весь курс разбит на 3 раздела, представляющих собой логически завершенный объём учебной информации. Фонды оценочных средств освоенных компетенций включа-ют вопросы теоретического характера для оценки знаний. Теоретические знания проверя-ются путём применения индивидуальных и групповых опросов..

6. Содержание дисциплины (модуля), структурированное по темам (разделам)

РАЗДЕЛ 1

Основы аналитической механики

Основные сведения из геометрической механики, используемые в аналитической механике.

. Некоторые основные положения аналитической механики. Устойчивость равновесия и движения системы

РАЗДЕЛ 2

Малые колебания систем Свободные колебания.

Вынужденные колебания.

РАЗДЕЛ 3

Линейные колебания системы с двумя и конечным числом степеней свободы Методы исследования линейных колебаний систем.

Анализ динамических систем при вынужденных колебаниях