МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА»

УТВЕРЖДАЮ:

Первый проректор

В.С. Тимонин

25 марта 2022 г.

Кафедра «Электропоезда и локомотивы»

Авторы Савоськин Анатолий Николаевич, д.т.н., профессор

Сердобинцев Евгений Васильевич, д.т.н., профессор

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Динамика систем

Специальность: 23.05.03 – Подвижной состав железных дорог

Специализация: Высокоскоростной наземный транспорт

Квалификация выпускника: Инженер путей сообщения

Форма обучения: очная

Год начала подготовки 2018

Одобрено на заседании

Учебно-методической комиссии института

Протокол № 9 20 мая 2019 г.

Председатель учебно-методической

комиссии

-

С.В. Володин

О.Е. Пудовиков

Рабочая программа учебной дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Евге

Подписал: Заведующий кафедрой Пудовиков Олег

Простая электронная подпись, выданная РУТ (МИИТ)

Одобрено на заседании кафедры

Евгеньевич

Дата: 15.05.2019

ID подписи: 5214

Протокол № 10

Заведующий кафедрой

15 мая 2019 г.

1. ЦЕЛИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Цель преподавания дисциплины — изложение некоторых методов ана-литической механики, применяемых для исследования динамики дос-таточно сложных систем, представляющих собой модели реальных конструкций подвижного состава (п.с.) железных дорог. В связи с развитием и совершенствованием методов исследования динамических процессов в рельсовом подвижном составе, возникает необходимость конкретизировать и выделить отдельные важные для рассматриваемой специализации «Электрический транспорт железных дорог» вопросы механики. Настоящий курс должен подготовить студента к восприятию методов, используемых при описании статического и динамического состояния подвижного состава с использованием современной вычислительной техники.

Задачи дисциплины:

- -студент должен приобрести навыки выбора наиболее подходящего метода решения конкретных задач по исследованию движения сложных систем;
- -студент должен приобрести навыки разработки кинематических схем моделей подвижного состава;
- -уметь определить число степеней свободы и создать математическую модель п.с. путем составления систем дифференциальных уравнений;
- -уметь составить и решить уравнения движения всех видов подвижного состава;
- -овладеть методами исследования свободных и вынужденных колеба-ний моделей подвижного состава;
- -иметь опыт анализа результатов исследований и выбора на основании этого анализа необходимых параметров рессорного подвешивания.
- приобретение студентами навыков самостоятельной работы с науч-но-технической литературой по динамике п.с.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ОП ВО

Учебная дисциплина "Динамика систем" относится к блоку 1 "Дисциплины (модули)" и входит в его вариативную часть.

2.1. Наименования предшествующих дисциплин

Для изучения данной дисциплины необходимы следующие знания, умения и навыки, формируемые предшествующими дисциплинами:

2.1.1. Математика:

Знания: методы решения дифференциальных уравнений

Умения: использовать основы интегрального и дифференциального исчисления при исследовании движения подвижного состава

Навыки: владеть основными методами обработки процессов колебаний

2.1.2. Теоретическая механика:

Знания: основы исследования кинематики и динамики твердых тел

Умения: использовать основные законы кинематики и динамики в профессиональной деятельности

Навыки: владеть основными законами и методами описания и исследования движения сложных механических систем

2.1.3. Физика:

Знания: физические основы механики, физики колебаний и волн

Умения: использовать основные законы механики и других естественнонаучных дисциплин в профессиональной деятельности

Навыки: владеть основными законами и методами механики

2.2. Наименование последующих дисциплин

Результаты освоения дисциплины используются при изучении последующих учебных дисциплин:

2.2.1. Государственная итоговая аттестация

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ), СООТНЕСЕННЫЕ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

В результате освоения дисциплины студент должен:

№ п/п	Код и название компетенции	Ожидаемые результаты
1	ОПК-7 способностью применять методы расчета и оценки прочности сооружений и конструкций на основе знаний законов	Знать и понимать: законы статики и динамики твердых тел.
	статики и динамики твердых тел, исследовать динамику и прочность элементов подвижного состава, оценивать его динамические качества и безопасность;	Уметь: составлять кинематические схемы и дифференциальные уравнения колебаний моде-лей подвижного состава.
		Владеть: методами исследования динамики реальных конструкций и моделей подвижного состава.
2	ПК-13 способностью проводить экспертизу и анализ прочностных и динамических характеристик подвижного состава, их технико-экономических параметров,	Знать и понимать: последовательность проведения экспертизы и анализа прочностных и динамических характеристик подвижного состава.
	оценивать технико-экономические параметры и удельные показатели подвижного состава;	Уметь: составлять кинематические и силовые схемы для выполнения расчетов прочности и динамики подвижного состава.
		Владеть: методами оценки технико-эномических параметров и удельных показателей подвижного состава
3	ПК-19 способностью выполнять расчеты типовых элементов технологических машин и подвижного состава на прочность, жесткость и устойчивость, оценить	Знать и понимать: порядок выполнения расчетов подвижного состава на прочность, жесткость и устойчивость
	динамические силы, действующие на детали и узлы подвижного состава, формировать нормативные требования к показателям	Уметь: оценивать динамические силы, действующие на детали и узлы подвижного состава.
	безопасности, выполнять расчеты динамики подвижного состава и термодинамический анализ теплотехнических устройств и кузовов подвижного состава.	Владеть: пакетами прикладных программ для исследования динамики подвижного состава.

4. ОБЪЕМ ДИСЦИПЛИНЫ (МОДУЛЯ) В ЗАЧЕТНЫХ ЕДИНИЦАХ И АКАДЕМИЧЕСКИХ ЧАСАХ

4.1. Общая трудоемкость дисциплины составляет:

3 зачетные единицы (108 ак. ч.).

4.2. Распределение объема учебной дисциплины на контактную работу с преподавателем и самостоятельную работу обучающихся

	Количеств	о часов
Вид учебной работы	Всего по учебному плану	Семестр 5
Контактная работа	54	54,15
Аудиторные занятия (всего):	54	54
В том числе:		
лекции (Л)	36	36
лабораторные работы (ЛР)(лабораторный практикум) (ЛП)	18	18
Самостоятельная работа (всего)	54	54
ОБЩАЯ трудоемкость дисциплины, часы:	108	108
ОБЩАЯ трудоемкость дисциплины, зач.ед.:	3.0	3.0
Текущий контроль успеваемости (количество и вид текущего контроля)	КР (1), ПК1, ПК2	КР (1), ПК1, ПК2
Виды промежуточной аттестации (экзамен, зачет)	34	3Ч

4.3. Содержание дисциплины (модуля), структурированное по темам (разделам)

	Виды учебной деятельности в часах/ в том числе интерактивной форме					Формы текущего				
№ п/п	Семестр	Тема (раздел) учебной дисциплины	Л	в том	числе инт	ерактивно С.Б.	а форме	Всего	текущего контроля успеваемости и промежу-точной аттестации	
1	2	3	4	5	6	7	8	9	10	
1	5	Раздел 1 Основы аналитической механики Основные сведения из геометрической механики, используемые в аналитической механике Некоторые основные положения аналитической механики. Устойчивость равновесия и движения системы	8				15	23		
2	5	Раздел 2 Малые колебания систем Свободные колебания. Вынужденные колебания.	18/3	8/3			15	41/6	ПК1	
3	5	Раздел 3 Линейные колебания системы с двумя и конечным числом степеней свободы Методы исследования линейных колебаний систем. Анализ динамических систем при вынужденных колебаниях	10/4	10/11			24	44/15	3Ч, КР, ПК2	
4		Всего:	36/7	18/14			54	108/21		

4.4. Лабораторные работы / практические занятия

Практические занятия учебным планом не предусмотрены.

Лабораторные работы предусмотрены в объеме 18 ак. ч.

№ п/п	№ семестра	Тема (раздел) учебной дисциплины	Наименование занятий	Всего ча- сов/ из них часов в интерак- тивной форме
1	2	3	4	5
1	5	РАЗДЕЛ 2 Малые колебания систем	Свободные и вынужденные колебания упрощенных моделей подвижного состава.	8/3
2	5	РАЗДЕЛ 3 Линейные колебания системы с двумя и конечным числом степеней свободы	Методы исследования линейных колебаний систем. Анализ динамических систем при вынужденных колебаниях.	10 / 11
ВСЕГО:				

4.5. Примерная тематика курсовых проектов (работ)

Варианты заданий на курсовую работу приведены в Методических указаниях для самостоятельной работы студентов по дисциплине «Аналитическая механика подвижного состава». Часть І. «Составление дифференциальных уравнений малых колебаний (издание 2-ое исправленное и дополненное)».

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Преподавание дисциплины «Динамика систем» осуществляется в форме лекций, лабораторного практикума (лабораторных работ) и курсового проектирования. При реализации программы дисциплины «Динамика систем» используются следу-ющие образовательные технологии. Лекции проводятся в традиционной классно-урочной организационной форме по типу управления познавательной деятельностью и являются традиционными классически-лекционными (объяснительно-иллюстративными)-все 36 часов Лабораторные работы/практические занятия проводятся в форме электронного прак-тикума, с применением компьютерных симуляций, компьютерных конструкторов и тра-диционных технологий (18 ч.).

Самостоятельная работа (49 ч.) подразумевает выполнение курсового проекта под руководством преподавателя (диалоговые технологии, проектные технологии), работу под руководством преподавателя в изучении специальных разделов дисциплины, подготовку к лабораторным работам.

Оценка полученных знаний, умений и навыков основана на модульно-рейтинговой технологии. Весь курс разбит на 3 раздела, представляющих собой логически завершенный объём учебной информации. Фонды оценочных средств освоенных компетенций включа-ют вопросы теоретического характера для оценки знаний. Теоретические знания проверя-ются путём применения индивидуальных и групповых опросов.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

№ п/п	№ семестра	Тема (раздел) учебной дисциплины	Вид самостоятельной работы студента. Перечень учебно-методического обеспечения для самостоятельной работы	Всего часов
1	2	3	4	5
1	5	РАЗДЕЛ 1 Основы аналитической механики	Применение принципа Даламбера для составления дифференциальных уравнений движения в форме геометрических уравнений равновесия. [1, стр. 15 - 40, 2,3].	5
2	5	РАЗДЕЛ 1 Основы аналитической механики	Применение уравнения Лагранжа II рода для составления дифференциальных уравнений колебаний. [1, стр. 26 - 29, 2,3].	5
3	5	РАЗДЕЛ 1 Основы аналитической механики	Исследование устойчивости равновесия и движения системы	5
4	5	РАЗДЕЛ 2 Малые колебания систем	Исследование свободных колебаний упрощенных моделей подвижного состава	10
5	5	РАЗДЕЛ 2 Малые колебания систем	Исследование вынужденных колебаний упрощенных моделей подвижного состава	5
6	5	РАЗДЕЛ 3 Линейные колебания системы с двумя и конечным числом степеней свободы	Методы исследования линейных колебаний систем	12
7	5	РАЗДЕЛ 3 Линейные колебания системы с двумя и конечным числом степеней свободы	Анализ динамических систем при вынужденных колебаниях. [2,3].	12
			ВСЕГО:	54

7. ПЕРЕЧЕНЬ ОСНОВНОЙ И ДОПОЛНИТЕЛЬНОЙ ЛИТЕРАТУРЫ, НЕОБХОДИМОЙ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

7.1. Основная литература

№ п/п	Наименование	Автор (ы)	Год и место издания Место доступа	Используется при изучении разделов, номера страниц
1	Краткий курс теоретической механики	Тарг Семен Михайлович	Высш. шк., 1995 НТБ (уч.1); НТБ (уч.3); НТБ (уч.6); НТБ (фб.); НТБ (чз.1); НТБ (чз.2)	Все разделы
2	Методические указания для самостоятельной работы студентов по дисц. "Аналитическая механика подвижн. состава"; для спец. "Электрический транспорт железных дорог"	Савоськин Анатолий Николаевич; Бурчак Генрих Павлович; Сердобинцев Евгений Васильевич; Поляков Александр Иванович	МИИТ, 2005 НТБ (ЭЭ); НТБ (уч.3)	Все разделы
3	Методические указания для самостоятельной работы "Колебания рельсовых экипажей"	Савоськин Анатолий Николаевич; Сердобинцев Евгений Васильевич; Винник Леонид Владимирович	МИИТ, 2001 НТБ (уч.3)	Все разделы

7.2. Дополнительная литература

№ п/п	Наименование	Автор (ы)	Год и место издания Место доступа	Используется при изучении разделов, номера страниц
4	Механическая часть тягового подвижного состава	Бирюков Иван Вячеславович; Савоськин Анатолий Николаевич; Бурчак Генрих Павлович; Бирюков Иван Вячеславович	Транспорт, 1992 НТБ (уч.3); НТБ (уч.6); НТБ (фб.)	Все разделы
5	Методические указания и задания для самостоятельной работы «Колебания рельсовых экипажей», часть II. «Свободные колебания»	Бурчак Генрих Павлович; Савоськин Анатолий Николаевич	Москва, МИИТ, 1994 НТБ МИИТа	Все разделы
6	Методические указания и задания для самостоятельной работы «Колебания рельсовых экипажей», часть III. «Вынужденные колебания».	Бурчак Генрих Павлович; Савоськин Анатолий Николаевич	1995 НТБ МИИТа	Все разделы

8. ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ "ИНТЕРНЕТ", НЕОБХОДИМЫЕ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

- 1.http://library.miit.ru/ электронно-библиотечная система научно-технической библиотеки МИИТ.
- 2.http://rzd.ru/ сайт ОАО «РЖД».
- 3. http://elibrary.ru/ научная электронная библиотека.
- 4. Поисковые системы: Yandex, Rambler, Google, Mail.

9. ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ, ИСПОЛЬЗУЕМЫХ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Для проведения лекционных занятий необходима специализированная лекционная аудитория с мультимедиа аппаратурой и интерактивной доской.

Для проведения лабораторных занятий и выполнения курсовой работы необходимо иметь комплекс программ для ПЭВМ или пакеты «Mathcad» и «Matlab», обеспечивающие возможность выполнения следующих вычислений:

- 1. Определение собственных значений и собственных векторов матриц с комплекс-ными коэффициентами с помощью QR- алгоритма.
- 2. Расчёт свободных и вынужденных детерминированных и случайных колебаний и показателей динамических качеств линейных и нелинейных упрощенных моделей электроподвижного состава во временной области.
- 3. Расчёт амплитудных и фазовых частотных характеристик, а также исследование в частотной области вынужденных случайных колебаний и определение показателей динамических качеств различных линейных моделей электроподвижного состава.

10. ОПИСАНИЕ МАТЕРИАЛЬНО ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Лекционная аудитория, оборудованная аудиовизуальными средствами обучения. Для проведения лабораторных занятий и выполнения курсового проекта необхо-димо иметь

• компьютерный класс с ЭВМ, подключенными к сетям INTERNET и INTRA-NET.

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

Обучающимся необходимо помнить, что качество полученного образования в не-малой степени зависит от активной роли самого обучающегося в учебном процессе. Сам студент должен быть нацелен на максимальное усвоение подаваемого лектором материа-ла. После лекции и во время специально организуемых индивидуальных встреч он может задать лектору интересующие его вопросы.

Лекционные занятия составляют основу теоретического обучения и должны давать систематизированные основы знаний по дисциплине, раскрывать состояние и перспективы развития соответствующей области науки, концентрировать внимание обучающихся на наиболее сложных и узловых вопросах, стимулировать их активную познавательную деятельность и способствовать формированию творческого мышления.

Главная задача лекционного курса – сформировать у обучающихся системное представление об изучаемом предмете, обеспечить усвоение будущими специалистами основополагающего учебного материала, принципов и закономерностей развития соответствующей научно-практической области, а также методов применения полученных знаний, умений и навыков.

Основные функции лекций: 1. Познавательно-обучающая; 2. Развивающая; 3. Ориентирующе-направляющая; 4. Активизирующая; 5. Воспитательная; 6. Организующая; 7. информационная.

Самостоятельная работа может быть успешной при определенных условиях, кото-рые необходимо организовать. Ее правильная организация, включающая технологии от-бора целей, содержания, конструирования заданий и организацию контроля, систематич-ность самостоятельных учебных занятий, целесообразное планирование рабочего времени позволяет привить студентам умения и навыки в овладении, изучении, усвоении и систе-

матизации приобретаемых знаний в процессе обучения, привить навыки повышения профессионального уровня в течение всей трудовой деятельности.

Каждому студенту следует составлять еженедельный и семестровый планы работы, а также план на каждый рабочий день. С вечера всегда надо распределять работу на зав-тра. В конце каждого дня целесообразно подводить итог работы: тщательно проверить, все ли выполнено по намеченному плану, не было ли каких-либо отступлений, а если были, по какой причине это произошло. Нужно осуществлять самоконтроль, который является необходимым условием успешной учебы. Если что-то осталось невыполненным, необходимо изыскать время для завершения этой части работы, не уменьшая объема недельного плана.

Компетенции обучающегося, формируемые в результате освоения учебной дисци-плины, рассмотрены через соответствующие знания, умения и владения. Для проверки уровня освоения дисциплины предлагаются вопросы к экзамену и контрольные вопросы к темам дисциплины.

Фонд оценочных средств является составной частью учебно-методического обес-печения процедуры оценки качества освоения образовательной программы, обеспечивает повышение качества образовательного процесса и входит, как приложение, в состав рабочей программы дисциплины.

Основные методические указания для обучающихся по дисциплине указаны в раз-деле основная и дополнительная литература. При изучении дисциплины «Динамика си-стем» студентам рекомендуется систематическая работа над материалом, пройденным на лекциях, при подготовке к выполнению лабораторных работ, разделов курсовой работы и самостоятельной работы. При появлении неясных вопросов при подготовке к выполнению лабораторных работ и выполнению самостоятельной работы необходимо изучить соответствующие разделы основной и дополнительной литературы.

Дисциплина «Динамика систем» ввиду большого объема этой дисциплины и его разнородности является, как свидетельствует опыт, достаточно сложной для усвоения студентами. Поэтому расчеты, являющиеся заключительным этапом лабораторных работ, курсовой и самостоятельной работ, выполняются студентом на ПЭВМ совместно с преподавателем. К результатам расчетов преподаватель должен давать студенту пояснения таким образом, чтобы этим продолжить процесс освоения студентом разделов дисциплины, относящихся к практическим занятиям, курсовой и самостоятельной работам.

При чтении лекций, для повышения уровня восприятия студентами излагаемого материала необходимо в начале каждой лекции конспективно повторять материал, изложенный в предыдущей лекции.

Основой организации учебной деятельности студента по освоению дисциплины «Динамика систем» должна являться его систематическая работа над изученным лекционным материалом при подготовке к практическим занятиям и при выполнении курсовой работы.