МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы специалитета по специальности 23.05.03 Подвижной состав железных дорог, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Динамика систем

Специальность: 23.05.03 Подвижной состав железных дорог

Специализация: Высокоскоростной наземный транспорт

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 5214

Подписал: заведующий кафедрой Пудовиков Олег

Евгеньевич

Дата: 24.10.2025

1. Общие сведения о дисциплине (модуле).

Целями освоения учебной дисциплины "Динамика систем" являются:

- изложение некоторых методов аналитической механики, применяемых для исследования динамики достаточно сложных систем, представляющих собой модели реальных конструкций подвижного состава (п.с.) железных дорог;
- исследование динамических процессов в рельсовом подвижном составе;
- изучение методов, используемых при описании статического и динамического состояния подвижного состава с использованием современной вычислительной техники.

Задачами освоения учебной дисциплины "Динамика систем" являются:

- освоение навыков выбора наиболее подходящего метода решения конкретных задач по исследованию движения сложных систем;
- освоение навыков разработки кинематических схем моделей подвижного состава;
- освоение в области создания математической модели п.с. путем составления систем дифференциальных уравнений;
- освоение в области составления и решения уравнения движения всех видов подвижного состава;
- освоение методов исследования свободных и вынужденных колебаний моделей подвижного состава;
- освоение анализа результатов исследований и выбора на основании этого анализа необходимых параметров рессорного подвешивания;
- освоение навыков самостоятельной работы с науч-но-технической литературой по динамике п.с.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ПК-9 - Имеет навык выполнять обоснование параметров конструкции конструкций и систем подвижного состава высокоскоростного наземного транспорта.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

аналитической механики, общее уравнение принципы динамики системы, понятие и применение обобщенных координат, выражения принципов механики в обобщенных силах, понятия и определения из теории устойчивости равновесия систем, свободные колебания систем с одной и с конечным числом степеней свободы, понятие и условия об устойчивости движения, методы исследования вынужденных колебаний ТЯГОВОГО подвижного состава.

Уметь:

определить число степеней свободы и создать математическую модель подвижного состава путем составления систем дифференциальных уравнений, составить и решить уравнения движения всех видов подвижного состава, анализировать результаты исследований и выбирать на основании этого анализа необходимые параметры рессорного подвешивания, уметь самостоятельно работать с научно-технической литературой по динамике подвижного состава

Владеть:

навыками выбора наиболее подходящего метода решения конкретных задач по исследованию движения сложных систем, навыками разработки кинематических схем моделей подвижного состава; владеть методами исследования свободных и вынужденных колебаний моделей подвижного состава

- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 4 з.е. (144 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
	Всего	Семестр №5
Контактная работа при проведении учебных занятий (всего):	64	64
В том числе:		
Занятия лекционного типа	32	32
Занятия семинарского типа	32	32

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 80 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.

4. Содержание дисциплины (модуля).

4.1. Занятия лекционного типа.

$N_{\underline{0}}$	Тематика лекционных занятий / краткое содержание			
Π/Π	тематика лекционных занятии / краткое содержание			
1	Краткие сведения из аналитической механики. Принцип ДАламбера.			
	Принцип Д'Аламбера; принцип Д'Аламбера для материальной точки.			
2	Принцип ДАламбера.			
	Принцип Д'Аламбера для системы материальных точек; главный вектор и главный момент сил			
	инерции твердого тела в различных случаях движения; применение принципа Д'Аламбера для решения практических задач.			
3	Некоторые дифференциальные принципы аналитической механики.			
	Понятие вариационного принципа; принцип задаваемых мощностей; принцип возможных мощностей.			
4	Некоторые дифференциальные принципы аналитической механики.			
	Общее уравнение динамики системы; принцип Журдена; принцип Лагранжа; пример применения			
	общего уравнения динамики системы; практическое применение принципов Журдена и Лагранжа в			
	задачах равновесия систем.			
5	Обобщенные координаты.			
	Понятие обобщенных координат; применение обобщенных координат в аналитической механике.			
6	Принципы механики в обобщенных силах.			
	Выражение принципов механики в обобщенных силах, понятие об обобщенных силах; общее			
	уравнение динамики в обобщенных силах.			
7	Уравнение Лагранжа второго рода.			
	Уравнение Лагранжа второго рода для консервативной системы; уравнение Лагранжа второго рода			
	для потенциальной системы с вязкими диссипативными связями.			
8	Применение методов аналитической механики с использованием обобщенных			
	координат и обобщенных сил.			
	Решение практических задач.			
9	Краткие сведения из теории устойчивости равновесия систем.			
	Устойчивое, неустойчивое и безразличное равновесие системы; равновесное положение системы с			
	идеальными стационарными связями; условие устойчивости равновесия (теорема Лагранжа).			

$N_{\underline{0}}$	Томотума помучуну и осматуй / уполись со получуну		
Π/Π	Тематика лекционных занятий / краткое содержание		
10	Колебания систем с одной степенью свободы.		
	Уравнение колебаний модели локомотива как системы с одной степенью свободы; свободные		
	колебания системы с одной степенью свободы (затухание отсутствует).		
11	Колебания систем с конечным числом степеней свободы		
	Особенности составления уравнений и форм записи уравнений колебаний систем с конечным число		
10	степеней свободы		
12	Уравнения колебаний модели локомотива как системы с двумя степенями свободы		
	Определение кинетической энергии, обобщенных силы инерции, обобщенных активных сил;		
	составление уравнений движения модели рельсового экипажа как системы с двумя степенями свободы.		
13	Свободные колебания систем с конечным числом степеней свободы.		
	Составление системы однородных дифференциальных уравнений и ее решение; корни		
	характеристического уравнения; коэффициенты распределения амплитуд; определение собственных		
	частот и форм колебаний; QR-алгоритм Френсиса-Кублановской; парциальные частоты колебаний;		
	парциальные коэффициенты относительного затухания; коэффициента связанности Л.И.		
	Мандельштама.		
14	Понятие об устойчивости движения.		
	Условия устойчивости А.М. Ляпунова; устойчивое и установившееся движения; графики		
	составляющих свободного движения системы, соответствующие вещественным значениям		
	характеристических показателей; графики составляющих свободного движения системы соответствующие комплексным значениям характеристических показателей; инкремент колебаний и		
	логарифмический инкремент; устойчивость «в малом», «в большом», «в целом».		
15	Методы исследования вынужденных колебаний тягового		
	Общие сведения о методах исследования вынужденных колебаний; вынужденные колебания		
	линейной системы с одной степенью свободы при непериодическом возмущении (колебания		
	линейной системы при возмущении в виде ступенчатой функции). Вынужденные колебания линейной		
	системы с одной степенью свободы при непериодическом возмущении (колебания линейной системы		
	при импульсном возмущении, колебания линейной системы при возмущающей функции общего		
	вида).		
16	Комплексная форма исследования установившегося вынужденного движения		
	системы с одной степенью свободы.		
	Выражение для обобщенного гармонического сигнала; комплексная функция частоты возмущающей		
	силы (частотная характеристика системы); динамическая безразмерная жесткость; амплитудная и		
	фазовая частотные характеристики; физический смыл частотной характеристики.		

4.2. Занятия семинарского типа.

Лабораторные работы

№ п/п	Наименование лабораторных работ / краткое содержание
1	Разработка кинематической схемы исследуемой модели вертикальных колебаний
	плоского двухосного экипажа:
	– анализ конструкции исследуемого экипажа и определение его параметров;
	– разработка кинематической схемы механо-математической модели вертикальных колебаний
	плоского двухосного экипажа
2	Составление системы уравнений вертикальных колебаний исследуемой модели в
	области времени t:
	– составление схемы сил, действующих на экипаж;

No	II		
Π/Π	Наименование лабораторных работ / краткое содержание		
	- запись выражений для сил и моментов сил инерции;		
	– запись выражений для упругих и диссипативных сил;		
	- составление уравнений вынужденных вертикальных колебаний подпрыгивания и галопирования		
	модели экипажа в области времени t.		
3	Составление системы уравнений вертикальных колебаний исследуемой модели в		
	области частоты ј?:		
	изучение принципов перехода из временной области в область частоты j?;		
	– запись возмущений, действующих на модель экипажа в области частоты, с учетом запаздывания		
	передачи возмущения на вторую по ходу движения колесную пару;		
	– запись системы дифференциальных уравнений вертикальных колебаний подпрыгивания и		
	галопирования исследуемой модели экипажа в области частоты.		
4	Понятие частотной характеристики системы. Вывод выражений исследуемых		
	частотных характеристик.		
	– преобразование диференциальных уравниний вертикальных колебаний модели экипажа в области		
	частоты с выделением частотных характеристик системы; понятие частотной характеристики		
	системы.		
	– запись выражений частотных характеристик системы как отношение изображения реакции системы		
	к изображению входного возмущения.		
5	Расчет исследуемых частотных характеристик при различных скоростях движения		
	экипажа.		
	– вывод выражений частотных характеристик системы в соответствии с заданием на лабораторную		
	работу (всего 10 различных частотных характеристик);		
	– подготовка исходных данных для расчета заданных частотных характеристик на ЦВМ;		
	 выполнение расчета заданных частотных характеристик на ЦВМ. 		
6	Исследование влияния скорости движения на частотные характеристики модели		
	экипажа.		
	– построение графиков заданных амплитудных частотных характеристик при различных скоростях		
	движения модели экипажа;		
	– анализ графиков заданных амплитудных частотных характеристик при различных скоростях		
	движения;		
	– расчет реакции системы (перемещения, силы, ускорения) при заданной амплитуде возмущения и		
	частоте по графикам амплитудных частотных характеристик системы;		
	– оценка влияния скорости движения на исследуемые частотные характеристики модели экипажа.		

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	Подготовка к лабораторным работам
2	Работа с литературой
3	Выполнение курсовой работы.
4	Подготовка к промежуточной аттестации.
5	Подготовка к текущему контролю.

4.4. Примерный перечень тем курсовых работ

«Исследование свободных колебаний упрощенных моделей э.п.с.».

Задание на курсовую работу включает в себя № кинематической схемы и № варианта исходных данных, приведенных в учебном пособии по данной дисциплине.

```
Вариатнты заданий
```

1)

- 1. № кинематической схемы: 3.4
- 2. № варианта исходных данных (табл. 3.1): 3

2)

- 1. № кинематической схемы: 3.4
- 2. № варианта исходных данных (табл. 3.1): 7

3)

- 1. № кинематической схемы: 3.4
- 2. № варианта исходных данных (табл. 3.1): 19

4)

- 1. № кинематической схемы: 3.5
- 2. № варианта исходных данных (табл. 3.2): 6

5)

- 1. № кинематической схемы: 3.5
- 2. № варианта исходных данных (табл. 3.2): 19

6)

- 1. № кинематической схемы: 3.5
- 2. № варианта исходных данных (табл. 3.2): 9

7)

- 1. № кинематической схемы: 3.6
- 2. № варианта исходных данных (табл. 3.3): 11

- 1. № кинематической схемы: 3.6
- 2. № варианта исходных данных (табл. 3.3): 15

9)

- 1. № кинематической схемы: 3.6
- 2. № варианта исходных данных (табл. 3.3): 7

10)

- 1. № кинематической схемы: 3.7
- 2. № варианта исходных данных (табл. 3.4): 1

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Оганьян, Э. С. Основы механики тягового подвижного состава: учебное пособие / Э. С. Оганьян. – Москва; Вологда: Инфра-Инженерия, 2025 120 с. – ISBN 978-5-9729-2347-2 Текст: электронный	URL: https://znanium.ru/catalog/product/2225896 (дата обращения: 24.10.2025). – Режим доступа: по подписке.
2	Методические указания для самостоятельной работы "Колебания рельсовых экипажей" А.Н. Савоськин, Е.В. Сердобинцев, Л.В. Винник; МИИТ. Каф. "Электрическая тяга" Однотомное издание МИИТ, 2001	НТБ (уч.3)
3	Механическая часть тягового подвижного состава И.В. Бирюков; А.Н. Савоськин; Г.П. Бурчак; Под ред. И.В. Бирюкова Однотомное издание Транспорт, 1992	https://ru.z- library.sk/book/3077461/4b7c5c/
4	Краткий курс теоретической механики С.М. Тарг. Высш. шк., 1986	https://ru.z- library.sk/book/450279/ff2f9e/Краткий- курс-теоретической-механики.html
5	Мазнев, А. С. Динамика электрического подвижного состава: учебное пособие / А.С. Мазнев, М.Ю. Изварин, А.М. Евстафьев. —	URL: https://znanium.ru/catalog/product/2119561 (дата обращения: 24.10.2025). – Режим

	Москва : ИНФРА-М, 2024. — 214 c. —	доступа: по подписке.
	(Высшее образование: Специалитет). — DOI	
	10.12737/1013692 ISBN 978-5-16-014968-4.	
	- Текст : электронный.	
1	Механическая часть тягового подвижного	НТБ (уч.3); НТБ (уч.6); НТБ (фб.)
	состава И.В. Бирюков; А.Н. Савоськин; Г.П.	
	Бурчак; Под ред. И.В. Бирюкова Однотомное	
	издание Транспорт, 1992	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

http://library.miit.ru/ – научно-техническая библиотека РУТ (МИИТ)

http://www.elibrary.ru/ – Информационный портал Научная электронная библиотека

http://window.edu.ru – единая коллекция цифровых образовательных ресурсов

http://rzd.ru/ - сайт ОАО «РЖД»

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Специализированная программа MathCAD

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Компьютерный класс.

9. Форма промежуточной аттестации:

Зачет в 5 семестре.

Курсовая работа в 5 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, доцент, к.н. кафедры

«Электропоезда и локомотивы» А.П. Васильев

профессор, профессор, д.н. кафедры

«Электропоезда и локомотивы» А.Н. Савоськин

Согласовано:

Заведующий кафедрой ЭиЛ О.Е. Пудовиков

Председатель учебно-методической

комиссии С.В. Володин