МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 01.03.02 Прикладная математика и информатика, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Динамические системы и модели в экологии

Направление подготовки: 01.03.02 Прикладная математика и

информатика

Направленность (профиль): Математическое моделирование и системный

анализ

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 5665

Подписал: заведующий кафедрой Нутович Вероника

Евгеньевна

Дата: 08.04.2025

1. Общие сведения о дисциплине (модуле).

Целями освоения учебной дисциплины (модуля) являются:

- овладение базовыми понятиями динамических систем и моделей экологии;
- формирование и развитие навыков решения профессиональных задач на основе методов динамических систем.

Задачами дисциплины (модуля) являются:

- знакомство студентов с основными задачами и моделями экологии и методами их решения;
- формирование и развитие компетенций в сфере использования методов математической биологии для решения профессиональных задач.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ПК-4 - Уметь ставить цели создания системы, разрабатывать концепцию системы и требования к ней, выполнять декомпозицию требований к системе.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- основные понятия и теоретические положения, используемые для разработки динамических математических моделей экологии;
 - основные методы математической биологии и экологии.

Уметь:

- разрабатывать, адаптировать и анализировать формальные модели динамических систем и процессов;
- интерпретировать модели динамических систем в терминах практических задач экологии.

Владеть:

- навыками обработки, анализа и синтеза информации на основе методов математической экологии;
- навыками формального описания и интерпретации результатов решения практических задач в области экологии.
 - 3. Объем дисциплины (модуля).

3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 3 з.е. (108 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
тип учесных занятии		Семестр №6
Контактная работа при проведении учебных занятий (всего):	64	64
В том числе:		
Занятия лекционного типа	32	32
Занятия семинарского типа	32	32

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 44 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

№ п/п	Тематика лекционных занятий / краткое содержание
1	Дискретные динамические системы
	Рассматриваемые вопросы:
	- одномерные дискретные динамические системы;
	- графическая процедура построения решения;
	- условия устойчивости неподвижных точек;
	- бифуркации положений равновесия;
	- возникновение циклов, теорема Шарковского;

3.0			
№ п/п	Тематика лекционных занятий / краткое содержание		
	- показатели Ляпунова;		
	- многомерные системы с дискретным временем.		
2	Многомерные системы с дискретным временем		
	Рассматриваемые вопросы:		
	- линейные многомерные дискретные системы;		
	- системы, содержащие запаздывание;		
	- условия устойчивости.		
3	Непрерывные динамические системы		
	Рассматриваемые вопросы:		
	- автономные динамические системы и их свойства;		
	- теорема о выпрямлении векторного поля;		
	- теорема о скорости изменения фазового объёма;		
	- ссвойства первых интегралов системы;		
	- Гамильтоновы системы и их свойства;		
	- фазовые портреты движения одномерной частицы под действием потенциальных сил;		
	- устойчивость по А.М. Ляпунову;		
	- теоремы Ляпунова об устойчивости;		
	- теорема Пуанкаре-Ляпунова об устойчивости по первому приближению;		
	- свойства предельных множеств;		
	- теорема Бендиксона-Дюлака;		
	- теорема Бендиксона-Пуанкаре и её следствия;		
	- теорема Андронова-Хопфа о возникновении предельного цикла.		
4	Гамильтоновы системы. Теория устойчивости		
7	і амильтоповы системы. Теорий устоичивости		
	Рассматриваемые вопросы:		
	- Гамильтоновы системы и их свойства;		
	- фазовые портреты движения одномерной частицы под действием потенциальных сил;		
	- устойчивость по А.М. Ляпунову;		
	- теоремы Ляпунова об устойчивости;		
	- теорема Пуанкаре-Ляпунова об устойчивости по первому приближению.		
5	Предельное поведение автономных динамических систем		
	Рассматриваемые вопросы:		
	- свойства предельных множеств;		
	- теорема Бендиксона-Дюлака;		
	- теорема Бендиксона-Пуанкаре и её следствия;		
	- отображение Пуанкаре;		
	- индексы Пуанкаре для систем в R2.		
6	Бифуркация Анронова-Хопфа		
J	Рассматриваемые вопросы:		
	- теорема Андронова-Хопфа о возникновении предельного цикла.		
7	Модели биологии и экологии		
,			
	Рассматриваемые вопросы:		
	- модель «Хищник-Жертва» Лотка-Вольтерра;		
	- модель «Хищник-Жертва» с учетом внутривидовой конкуренции;		
	- анализ модели взаимодействия двух конкурирующих видов;		
	- принцип исключения Гаузе;		
	- модель взаимодействия загрязнений с окружающей средой;		
0	- модель очистки сточных вод.		
8	Математические модели распространения эпидемий		
	Рассматриваемые вопросы:		

№ п/п	Тематика лекционных занятий / краткое содержание
	-SIR модель распространения эпидемии;
	-SIRS модель с повторной инфекцией;
	- модели вирусных инфекций.

4.2. Занятия семинарского типа.

Практические занятия

№	Тематика практических занятий/краткое содержание		
п/п	темитика практи теских запитим краткое содержание		
1	Дискретные динамические системы		
	В результате работы на практическом занятии студент получает навыки применения графической		
	процедуры построения решения; исследования устойчивости неподвижных точек; изучения		
	характера бифуркации положений равновесия; отыскания циклических последовательностей и		
	построения бифуркационных диаграмм конкретных систем.		
2	Многоменрные дискретные системы		
	В результате работы на практическом занятии студент получает навык отыскания циклических		
	последовательностей; построения бифуркационных диаграмм конкретных систем.		
3	Показатели Ляпунова		
	В результате работы на практическом занятии студент получает навык вычисления показателей		
	Ляпунова для одномерны и мнгомерных дискретных динамических систем.		
4	Исследование устойчивости динамических систем		
	В результате работы на практическом занятии студент получает навык исследования автономных		
	динамических системы и их свойств; исследования устойчивости положений равновесия;		
	построения фазовых и параметрических портретов.		
5	Исследование предельного поведения динамических систем		
	В результате работы на практическом занятии студент получает навык изучения предельного		
	поведения динамических систем; исследования условий возникновения предельного цикла.		
6	Модели биологии		
	В результате работы на практическом занятии студент получает навык - детального		
	математического анализа различных моделей вида «Хищник-Жертва» Лотка-Вольтерра, моделей		
	динамики развития эпидемий, математических моделей взаимодействия загрязнений с окружающей		
7	средой.		
7	Модели экологии		
	В результате работы на практическом занятии студент получает навык исследования		
	математических моделей взаимодействия загрязнений с окружающей средой.		
8	Модели эпидемий		
	В результате работы на практическом занятии студент получает навык исследования моделей		
	динамики развития эпидемий.		

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы	
1	Изучение учебной литературы из приведенных источников	
2	Подготовка к практическим занятиям	
3	Подготовка к промежуточной аттестации.	
4	Подготовка к текущему контролю.	

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

3.0	• • • • • • • • • • • • • • • • • • • •	T T
№ п/п	Библиографическое описание	Место доступа
1	Братусь, А. С. Динамические системы и модели биологии / А. С. Братусь, А. С. Новожилов, А. П. Платонов. — Москва : ФИЗМАТЛИТ, 2009. — 400 с. — ISBN 978-5-9221-1192-8.	https://znanium.ru/read?id=38119 (дата обращения: 25.06.2025)
2	Ризниченко, Г. Ю. Математическое моделирование биологических процессов. Модели в биофизике и экологии: учебное пособие для вузов / Г. Ю. Ризниченко. — 2-е изд., перераб. и доп. — Москва: Издательство Юрайт, 2024. — 181 с. — (Высшее образование). — ISBN 978-5-534-07037-8.	https://urait.ru/bcode/537454 (дата обращения: 09.04.2025).
3	Ризниченко, Г. Ю. Математические методы в биологии и экологии. Биофизическая динамика продукционных процессов : учебник для вузов / Г. Ю. Ризниченко, А. Б. Рубин. — 3-е изд., перераб. и доп. — Москва : Издательство Юрайт, 2025. — 409 с. — (Высшее образование). — ISBN 978-5-534-19922-2	https://urait.ru/bcode/557337 (дата обращения: 09.04.2025)
4	Ризниченко, Г. Ю. Математические методы в биологии и экологии. Биофизическая динамика продукционных процессов в 2 ч. Часть 2 : учебник для вузов / Г. Ю. Ризниченко, А. Б. Рубин. — 3-е изд., перераб. и доп. — Москва : Издательство Юрайт, 2024. — 185 с. — (Высшее образование). — ISBN 978-5-534-07874-9.	https://urait.ru/bcode/538019 (дата обращения: 09.04.2025)
5	Ризниченко, Г. Ю. Динамика популяций : учебное пособие для вузов / Г. Ю. Ризниченко. — Москва : Издательство Юрайт, 2024. — 46 с. — (Высшее образование). — ISBN 978-5-534-15543-3.	https://urait.ru/bcode/544670 (дата обращения: 09.04.2025)

- 6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).
 - Научно-техническая библиотека РУТ (МИИТ) (http://library.miit.ru);
- Информационный портал Научная электронная библиотека eLIBRARY.RU (www.elibrary.ru);
 - Образовательная платформа «Юрайт» (https://urait.ru/);

- Электронно-библиотечная система издательства «Лань» (http://e.lanbook.com/);
- Интернет-университет информационных технологий (http://www.intuit.ru/).
- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).
 - Операционная система Windows;
 - Microsoft Office;
 - MS Teams;
 - Поисковые системы.
- 8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебные аудитории для проведения учебных занятий, оснащенные компьютерной техникой и наборами демонстрационного оборудования.

9. Форма промежуточной аттестации:

Экзамен в 6 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

профессор, профессор, д.н. кафедры «Цифровые технологии управления транспортными процессами»

А.С. Братусь

Согласовано:

Заведующий кафедрой ЦТУТП

В.Е. Нутович

Председатель учебно-методической

комиссии Н.А. Андриянова