МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 09.03.02 Информационные системы и технологии, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Дискретная математика и математическая логика

Направление подготовки: 09.03.02 Информационные системы и

технологии

Направленность (профиль): Информационные системы и технологии на

транспорте

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 5665

Подписал: заведующий кафедрой Нутович Вероника

Евгеньевна

Дата: 24.05.2022

1. Общие сведения о дисциплине (модуле).

Целями освоения учебной дисциплины «Дискретная математика и математическая логика» являются:

- овладение базовыми понятиями и теоретическими основами дискретной математики и математической логики;
- формирование и развитие умений и навыков решения профессиональных задач на основе методов дискретной математики и математической логики.

Задачами дисциплины (модуля), являются:

- исследование математических методов моделирования информационных и имитационных прикладных задач;
- исследование и разработка математических моделей, алгоритмов и методов по тематике проектов.

Kypc предназначен формирования основ математической ДЛЯ подготовки студентов. Знания, умения и навыки, приобретаемые студентами в процессе изучения этой дисциплины, используются практически во всех общепрофессиональных других естественнонаучных И Компетенции, приобретаемые студентами, применяются ДЛЯ экспериментально - исследовательской деятельности.

2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ОПК-1 - Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности;.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Уметь:

- разрабатывать, адаптировать и анализировать формальные модели дискретной математики в области разработки моделей компонентов информационных систем, включая модели баз данных и модели интерфейсов "человек электронно-вычислительная машина";
- анализировать результаты профессиональных исследований на основе методов математической логики.

Знать:

- основные понятия и теоретические положения дискретной математики, используемые для разработки моделей компонентов информационных систем;
- основные методы дискретной математики и математической логики, используемые для обработки, анализа и синтеза результатов профессиональных исследований в области информационных технологий.

Владеть:

- навыками обработки, анализа и синтеза результатов профессиональных исследований на основе методов дискретной математики и математической логики;
- навыками формального описания и интерпретации результатов решения практических задач в области моделирования компонентов информационных систем (в объеме курса).
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 3 з.е. (108 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
	Всего	Семестр №3
Контактная работа при проведении учебных занятий (всего):	64	64
В том числе:		
Занятия лекционного типа	32	32
Занятия семинарского типа	32	32

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 44 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме

контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.

4. Содержание дисциплины (модуля).

4.1. Занятия лекционного типа.

No	T	
п/п	Тематика лекционных занятий / краткое содержание	
1	Основы теории множеств.	
	Рассматриваемые вопросы:	
	- понятие множества;	
	- язык теории множеств;	
	- операции над множествами;	
	- диаграммы Эйлера-Венна;	
	- мощность множества;	
	- формула включения-исключения;	
	- алгебра множеств, ее тождества.	
2	Элементы комбинаторики	
	Рассматриваемые вопросы:	
	- правило суммы и правило произведения;	
	- число перестановок;	
	- число сочетаний, в т.ч. с повторами;	
	- число размещений, в т.ч. с повторами;	
	- бином Ньютона.	
3	Отношения на множествах	
	Рассматриваемые вопросы:	
	- декартово произведение множеств, его свойства;	
	- отношения на множествах;	
	- свойства и типы отношений на множествах;	
	- классы отношений эквивалентности и отношений порядка;	
	- понятие отображения;	
	- виды отображений;	
4	- функциональные отношения на множествах (функции).	
4	Элементы теории графов	
	Рассматриваемые вопросы:	
	- основные понятия теории графов;	
	- матрицы смежности и инцидентности, их свойства;	
	- теорема о связи суммы степеней вершин неорграфа и числа его рёбер;	
	 теорема о существовании в графе эйлерова цикла; теорема о связи числа вершин и числа рёбер дерева; 	
	- теорема о связи числа вершин и числа реоер дерева, - цикломатическое число графа.	
5	Булевы функции	
	Рассматриваемые вопросы:	
	- понятие булевой функции;	
	- существенные и фиктивные переменные булевой функции;	
	- характеристические функции нуля и единицы;	

3.0	
№ п/п	Тематика лекционных занятий / краткое содержание
	- булева алгебра, ее тождества и стандартный базис;
	- правило Блейка;
	- теорема Яблонского о полноте;
	- совершенная дизъюнктивная нормальная форма (СДНФ);
	- совершенная конъюнктивная нормальная форма (СКНФ);
	- базис Жегалкина;
	- полиномиальная нормальная форма (ПНФ);
	- предполные классы булевых функций;
	- критерий Поста;
	- понятие контактной схемы (КС);
	- функциональные элементы КС;
	- задачи анализа, синтеза и минимизации КС.
6	Логика высказываний
	Рассматриваемые вопросы:
	- понятие формальной логики;
	- логические парадоксы;
	- формализация утверждений;
	- язык логики высказываний;
	- логическое значение высказывания;
	- теорема о вычислении логического значения высказываний;
	- алгебра высказываний;
	- понятие логического следования;
	- теорема о признаке логического следования;
	- теорема о признаке логической равносильности.
7	Логика предикатов
	Рассматриваемые вопросы:
	- понятие предиката в логике;
	- множество истинности предиката;
	- кванторные операции над предикатами;
	- формулы логики предикатов;
	- законы логики предикатов;
	- теорема о приведенной форме;
	- теорема о предваренной нормальной форме.
8	Формальные аксиоматические теории
	Рассматриваемые вопросы:
	- понятие формальной аксиоматической теории (ФАТ);
	- основные свойства ФАТ;
	- формализованное исчисление высказываний (ФИВ);
	- понятие вывода (доказательства) формулы ФИВ;
	- теорема о дедукции;
	- свойства ФИВ;
	- формализованное исчисление предикатов (ФИП);
	- свойства ФИП;
	- формальная арифметика (ФА);
	- теоремы Гёделя о неполноте ФА;
	- теорема Чёрча о неразрешимости ФА;
	- теорема Тарского об истинности.

№	Тематика лекционных занятий / краткое содержание	
п/п		
9	Вычислимые функции	
	Рассматриваемые вопросы:	
	- понятие алгоритмически вычислимой функции;	
	- аксиоматическая теория вычислимых функций;	
	- понятие функции, вычислимой по Чёрчу;	
	- тезис Чёрча.	
10	Машина Тьюринга	
	Рассматриваемые вопросы:	
	- понятие машины Тьюринга;	
	- понятие функции, вычислимой по Тьюрингу;	
	- тезис Тьюринга;	
	- теорема об эквивалентности множества функций, вычислимых по Тьюрингу, и множества	
	функций, вычислимых по Чёрчу.	
11	Основы теории сложности алгоритмов	
	Рассматриваемые вопросы:	
	- понятие массовой проблемы;	
	- теорема о существовании функции, невычислимой по Тьюрингу;	
	- теорема Райса;	
	- временная функция сложности алгоритма;	
	- шкала асимптотической сложности алгоритмов;	
	- сложностные классы массовых проблем;	
	- понятия практически решаемой и труднорешаемой массовой проблемы;	
	- классы массовых проблем Р и NP.	

4.2. Занятия семинарского типа.

Практические занятия

No॒	Тематика практических занятий/краткое содержание	
Π/Π	тематика практических занятии/краткое содержание	
1	Основы теории множеств	
	В результате работы на практическом занятии студент получает навык:	
	- формулировать и анализировать аналитическое описание множества;	
	- строить диаграммы Эйлера-Венна по аналитическому описанию множества;	
	- преобразовывать аналитические описания множеств с помощью тождеств алгебры множеств;	
	- использовать формулу включения-исключения для вычисления мощности множества, заданного	
	аналитически.	
2	Элементы комбинаторики	
	В результате работы на практическом занятии студент получает навык:	
	- использовать правило суммы и правило произведения в комбинаторных вычислениях;	
	- использовать основные формулы комбинаторики для выполнения комбинаторных расчетов;	
	- вычислять коэффициенты разложения бинома Ньютона.	
3	Отношения на множествах	
	В результате работы на практическом занятии студент получает навык:	
	- строить графики отношений на множествах (на декартовой плоскости);	
	- формулировать и анализировать свойства бинарных отношений на множествах;	

No	
п/п	Тематика практических занятий/краткое содержание
	- классифицировать бинарные отношения на множествах;
	- формулировать и анализировать свойства отображений множеств
4	Элементы теории графов
•	В результате работы на практическом занятии студент получает навык:
	- строить и анализировать матрицу смежности для графов, заданных графически или аналитически;
	- строить и анализировать матрицу инцидентности для графов, заданных графически или
	аналитически;
	- классифицировать графы;
	- определять основные характеристики графа, в т.ч. наличие/отсутствие в нем цикла, по его
	аналитическому описанию.
5	Булевы функции
	В результате работы на практическом занятии студент получает навык:
	- строить таблицу истинности булевой функции;
	- выявлять существенные и фиктивные переменные булевой функции;
	- преобразовывать запись булевой функции с помощью тождеств булевой алгебры;
	- строить СДНФ, СКНФ, ПНФ для булевой функции;
	- определять принадлежность булевой функции к предполным классам;
	- определять функциональную полноту системы булевых функций по критерию Поста.
6	Логика высказываний
	В результате работы на практическом занятии студент получает навык:
	- формализовывать утверждения на языке логики высказываний;
	- интерпретировать формулы логики высказываний;
	- строить таблицу истинности формулы логики высказываний;
	- вычислять логическое значение высказывания;
	- классифицировать высказывания;
	- выявлять логическое следование; - выполнять тождественные преобразования формул логики высказываний.
7	
/	Логика предикатов
	В результате работы на практическом занятии студент получает навык:
	- формализовывать утверждения на языке логики предикатов;
	интерпретировать формулы логики предикатов;определять множество истинности предиката;
	- определять множество истинности предиката; - классифицировать предикаты;
	- классифицировать предикаты, - выполнять тождественные преобразования формул логики предикатов, в т.ч. к предварённой
	нормальной форме.
8	Формальные аксиоматические теории
	В результате работы на практическом занятии студент получает навык:
	- доказывать теоремы формализованного исчисления высказываний, в т.ч. с использованием
	теоремы о дедукции;
	- строить доказательства простейших теорем формальной арифметики с помощью аксиомы
	индукции.
9	Вычислимые функции
	В результате работы на практическом занятии студент получает навык:
	- классифицировать вычислимые функции;
	- доказывать вычислимость по Чёрчу простейших рекурсивных функций
10	Машина Тьюринга
	В результате работы на практическом занятии студент получает навык:
	- описывать машину Тьюринга в табличном виде;
	- представлять функциональную схему машины Тьюринга в символьном виде;
	- строить машину Тьюринга для простейших функций, вычислимых по Тьюрингу.

№ п/п	Тематика практических занятий/краткое содержание	
11	Основы теории сложности алгоритмов	
	В результате работы на практическом занятии студент получает навык:	
	- классифицировать массовые проблемы;	
	- классифицировать алгоритмы по шкале их асимптотической сложности.	

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	Изучение дополнительной литературы.
2	Подготовка к практическим занятиям.
3	Выполнение самостоятельных работ.
4	Подготовка к промежуточной аттестации.
5	Подготовка к текущему контролю.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ π/π	Библиографическое описание	Место доступа
1	Судоплатов, С. В. Дискретная математика : учебник и практикум для вузов С. В. Судоплатов, Е. В. Овчинникова. 5-е изд., испр. и доп. Москва : Издательство Юрайт, 2022. 279 с. (Высшее образование). ISBN 978-5-534-00871-5.	https://urait.ru/bcode/488927 (дата обращения: 13.04.2022) Текст : электронный.
2	Судоплатов, С. В. Математическая логика и теория алгоритмов: учебник и практикум для вузов С. В. Судоплатов, Е. В. Овчинникова. 5-е изд., стер. Москва: Издательство Юрайт, 2022. 207 с. (Высшее образование). ISBN 978-5-534-12274-9.	https://urait.ru/bcode/447321 (дата обращения: 13.04.2022) Текст: электронный.
3	Палий, И. А. Дискретная математика и математическая логика: учебное пособие для вузов И. А. Палий. 3-е изд., испр. и доп. Москва: Издательство Юрайт, 2022. 370 с. (Высшее образование). ISBN 978-5-534-12446-0.	https://urait.ru/bcode/492848 (дата обращения: 13.04.2022) Текст: электронный.
4	Пак, В. Г. Дискретная математика: теория множеств и комбинаторный анализ. Сборник задач: учебное пособие для	https://urait.ru/bcode/491997 (дата обращения: 13.04.2022) Текст : электронный.

	вузов В. Г. Пак. Москва : Издательство	
	Юрайт, 2022. 235 с. (Высшее	
	образование). ISBN 978-5-534-09512-8.	
5	Журавлев, Ю. И. Дискретный анализ.	https://urait.ru/bcode/491079 (дата
	Формальные системы и алгоритмы:	обращения: 13.04.2022) Текст:
	учебное пособие для вузов Ю. И.	электронный.
	Журавлев, Ю. А. Флеров, М. Н. Вялый. 2-е	
	изд., испр. и доп. Москва: Издательство	
	Юрайт, 2022. 318 с. (Высшее	
	образование). ISBN 978-5-534-06279-3.	
6	Клековкин, Г. А. Геометрическая теория	https://urait.ru/bcode/492706 (дата
	графов : учебное пособие для вузов Г. А.	обращения: 13.04.2022) Текст:
	Клековкин, Л. П. Коннова, В. В. Коннов.	электронный.
	2-е изд., испр. и доп. Москва:	
	Издательство Юрайт, 2022. 240 с.	
	(Высшее образование). ISBN 978-5-534-	
	04812-4.	
7	Дискретная математика: прикладные	https://urait.ru/bcode/492349 (дата
	задачи и сложность алгоритмов: учебник	обращения: 13.04.2022) Текст:
	и практикум для вузов А. Е. Андреев, А.	электронный.
	А. Болотов, К. В. Коляда, А. Б. Фролов. 2-	
	е изд., испр. и доп. Москва : Издательство	
	Юрайт, 2022. 317 с. (Высшее	
	образование). ISBN 978-5-534-04246-7.	
8	Программирование: математическая	https://urait.ru/bcode/495357 (дата
	логика: учебное пособие для вузов М. В.	обращения: 13.04.2022) Текст: электронный.
	Швецкий, М. В. Демидов, А. В. Голанова,	электронный.
	И. А. Кудрявцева. 2-е изд., перераб. и доп.	
	Москва: Издательство Юрайт, 2022. 675	
	с. (Высшее образование). ISBN 978-5-534-	
	11009-8.	https://slanksalessam/kssl-/160066/s
9	Тюрин, С. Ф. Дискретная математика:	https://e.lanbook.com/book/ 160866 (дата обращения: 13.04.2022) Текст:
	тест-драйв по дискретной математике и	ооращения: 13.04.2022) Текст: электронный.
	математической логике: учебное пособие	oneki politibiri.
	С. Ф. Тюрин, Ю. А. Аляев. Пермь:	
	ПНИПУ, 2014. 231 с. ISBN 978-5-398-	
10	Varranty P. Hyarnatyan Matawatyusa yun	https://e.lanbook.com/book/ 73011 (дата
10	Хаггарти, Р. Дискретная математика для	nttps://e.lanbook.com/book/ /3011 (дата обращения: 13.04.2022) Текст :
	программистов Р. Хаггарти. 2-е изд., испр.	электронный.
	Москва: Техносфера, 2012. 40 с. ISBN 978-5-94836-303-5.	
11		https://e.lanbook.com/book/ 2157 (дата
11	Гаврилов, Г. П. Задачи и упражнения по дискретной математике: учебное пособие	обращения: 13.04.2022) Текст:
		электронный.
	Г. П. Гаврилов, А. А. Сапоженко. 3-е изд.,	P

	7) f	
	перераб. Москва: ФИЗМАТЛИТ, 2009.	
	416 c. ISBN 978-5-9221-0477-7.	
12	Верещагин, Н. К. Лекции по	https://e.lanbook.com/book/ 9306 (дата
	математической логике и теории	обращения: 13.04.2022) Текст:
	алгоритмов : учебное пособие Н. К.	электронный.
	Верещагин, А. Шень. 3-е изд., стер.	
	Москва : МЦНМО, [б. г.]. Часть 1 : Начала	
	теории множеств 2008. 128 с. ISBN 978-5-	
	94057-321-0.	
13	Верещагин, Н. К. Лекции по	https://e.lanbook.com/book/ 9307 (дата
	математической логике и теории	обращения: 13.04.2022) Текст:
	алгоритмов: учебное пособие Н. К.	электронный.
	Верещагин, А. Шень. 3-е изд., доп.	
	Москва : МЦНМО, [б. г.]. Часть 2 : Языки	
	и исчисления 2008. 288 с. ISBN 978-5-	
	94057-322-7.	
14	Верещагин, Н. К. Лекции по	https://e.lanbook.com/book/ 9308 (дата
	математической логике и теории	обращения: 13.04.2022) Текст:
	алгоритмов: учебное пособие Н. К.	электронный.
	Верещагин, А. Шень. 3-е изд., стер.	
	Москва : МЦНМО, [б. г.]. Часть 3 :	
	Вычислимые функции 2008. 192 с. ISBN	
	978-5-94057-323-4.	
15	Успенский, В. А. Вводный курс	https://e.lanbook.com/book/ 2355 (дата
	математической логики: учебное пособие	обращения: 13.04.2022) Текст:
	В. А. Успенский. 2-е изд. Москва:	электронный.
	ФИЗМАТЛИТ, 2007. 128 с. ISBN 978-5-	
	9221-0278-0.	
16	Игошин, В. И. Сборник задач по	https://znanium.com/catalog/product/986940
	математической логике и теории	(дата обращения: 13.04.2022) Текст:
	алгоритмов: учебное пособие В. И.	электронный.
	Игошин Москва : КУРС : ИНФРА-М,	
	2019 392 c ISBN 978-5-906818-08-9.	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Официальный сайт РУТ (МИИТ) (https://www.miit.ru/).

Научно-техническая библиотека РУТ (МИИТ) (http:/library.miit.ru).

Образовательная платформа «Юрайт» (https://urait.ru/).

Электронно-библиотечная система издательства «Лань» (https://e.lanbook.com/).

Электронно-библиотечная система Znanium (https://znanium.com/).

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Microsoft Internet Explorer (или другой браузер). Операционная система Microsoft Windows. Microsoft Office.

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебные аудитории для проведения учебных занятий, оснащенные компьютерной техникой и наборами демонстрационного оборудования.

В случае проведении занятий с применением электронного обучения и дистанционных образовательных технологий необходимо наличие компьютерной техники, для организации коллективных и индивидуальных форм общения педагогических работников со студентами, посредством используемых средств коммуникации.

Допускается замена оборудования его виртуальными аналогами

9. Форма промежуточной аттестации:

Экзамен в 3 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, к.н. кафедры «Цифровые технологии управления транспортными процессами»

В.М. Моргунов

Согласовано:

Заведующий кафедрой ЦТУТП

В.Е. Нутович

Председатель учебно-методической

комиссии Н.А.Клычева