МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 01.03.02 Прикладная математика и информатика, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Дифференциальные уравнения

Направление подготовки: 01.03.02 Прикладная математика и

информатика

Направленность (профиль): Математические модели в экономике и

технике

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 5665

Подписал: заведующий кафедрой Нутович Вероника

Евгеньевна

Дата: 01.09.2021

1. Общие сведения о дисциплине (модуле).

Целями освоения учебной дисциплины (модуля) являются:

- освоение одного из самых развитых современных языков описания различных математических моделей язык дифференциальных уравнений;
 - изучение базовых понятий теории дифференциальных уравнений;
- освоение основных приемов решения практических задач по темам дисциплины.

Задачей дисциплины (модуля) является:

- овладение студентами основами дисциплины и его приложений в различных областях знаний, необходимыми для успешного изучения последующих математических и других естественнонаучных дисциплин.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-1** Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной деятельности;
- **ОПК-3** Способен применять и модифицировать математические модели для решения задач в области профессиональной деятельности.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- основы дифференциального и интегрального исчисления, теорию числовых и функциональных рядов;
- основные понятия теории метрических и линейных нормированных пространств, теорию общих ортогональных систем, тригонометрических рядов и интегралов Фурье.

Уметь:

- применять криволинейные и поверхностные интегралы для решения задач геометрии и физики;
- исследовать функции нескольких переменных, находить их безусловные и условные экстремумы;
 - исследовать сходимость числовых и функциональных рядов.

Владеть:

- навыками применения теории дифференциального и интегрального

исчислений, теории функциональных рядов, методами исследования линейных алгебраических систем;

- методами решения задач и применять теории дифференциального и интегрального исчислений, теории функциональных рядов, методами исследования линейных алгебраических систем в профессиональной деятельности;
 - математическими моделями в профессиональной деятельности.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 5 з.е. (180 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

		Количество	
Тип учебных занятий	часов		
	Всего	Сем.	
		№ 4	
Контактная работа при проведении учебных занятий (всего):	100	100	
В том числе:			
Занятия лекционного типа	50	50	
Занятия семинарского типа	50	50	

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 80 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.

4. Содержание дисциплины (модуля).

4.1. Занятия лекционного типа.

№	Тематика лекционных занятий / краткое содержание		
Π/Π	тематика лекционных занятии / краткое содержание		
1	Дифференциальные уравнения 1-го порядка Рассматриваемые вопросы: - теорема о существовании и единственности решения; - уравнения с разделяющимися переменными. Однородные уравнения;		
	 - линейные уравнения первого порядка. Уравнение Бернулли; - уравнения в полных дифференциалах. Интегрирующий множитель; - дифференциальные уравнения, не разрешенные относительно производной; - дифференциальные уравнения 1-го порядка. 		
2	Дифференциальные уравнения высших порядков. Системы дифференциальных уравнений Рассматриваемые вопросы: - постановка задачи Коши для уравнений высших порядков. Сведение к системе уравнений; - постановка задачи Коши для систем. Линейные системы дифференциальных уравнений первого порядка; - линейная зависимость и независимость вектор функций. Определитель Вронского системы и его свойства; - фундаментальная система решений для системы дифференциальных уравнений первого порядка; - теорема о представлении решений в виде линейной комбинации вектор функций фундаментальной системы;		
	- методы решения однородных линейных дифференциальных уравнений с постоянными коэффициентами; - дифференциальные уравнения высших порядков. Системы дифференциальных уравнений.		
3	Теория колебаний Рассматриваемые вопросы: - гармонические колебания; - явление резонанса; - задачи из теории колебаний; - решение уравнений с помощью рядов.		
4	Вопросы теории устойчивости Рассматриваемые вопросы: - классификация особых точек систем на плоскости; - устойчивость по Ляпунову; - понятие о функции Ляпунова.		
5	Краевые задачи Рассматриваемые вопросы: - краевые задачи для уравнения второго порядка типа Штурма-Лиувилля.		

4.2. Занятия семинарского типа.

Практические занятия

No	Томотика практиноских запатий/краткое солоржание				
п/п	Тематика практических занятий/краткое содержание				
1	Дифференциальные уравнения 1-го порядка				
	В результате работы на практических занятиях на конкретных примерах студенты рассматривают интегральные кривые, учаться находить частные и общие решения, разбирают метод Эйлера для численного решения уравнений, рассматривают метод изоклин, решают уравнения с разделяющимися переменными и однородные уравнения, а так же линейные уравнения певрого порядка и уравнение Бернулли, рассматривают уравнения в полных дифференциалах, вычисляют интегрирующий множитель, рассматривают дифференциальные уравнения, не разрешенные относительно производной, учаться применять теорему о существовании решений при решении определенных задач.				
2	Дифференциальные уравнения высших порядков. Системы дифференциальных				
	уравнений				
	В результате работы на практических занятиях студенты на практических примерах рассматривают				
	постановку задачи Коши для уравнений высших порядков, исследуют линейные системы				
	дифференциальных уравнений первого порядка, применяют линейную зависимость и независимость				
	веторов функций при решений задач, рассматривают определитель Вронского системы функций и его				
	свойства, применяют фундаментальную систему решений для системы дифференциальных уравнений				
	первого порядка, изучают теорему о представлении решений в виде линейной комбинации вектора функций фундмаентальной системы.				
3	Теория колебаний				
	В результате работы на практических занятиях студенты на практических примерах учаться решать				
	уравнения с помощью рядов.				
4	Вопросы теории устойчивости				
	В результате работы на практических занятиях студенты на практических примерах рассматривают				
	классификацию особых точек систем на плоскости, исследуют устойчивость по Ляпунову.				
5	Краевые задачи				
	В результате работы на практических занятиях студенты на практических примерах вычисляют				
	краевые задачи для уравнения второго порядка типа Штурма-Лиувилля.				

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	Изучение дополнительной литературы.
2	Подготовка к практическим занятиям.
3	Подготовка к промежуточной аттестации.
4	Подготовка к текущему контролю.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа	
1	Сафро В.М., Скачко А.В., Чумерина Е.С.	НТБ МИИТ	
	Обыкновенные дифференциальные уравнения.		
	Методические укащания к практическим занятиям		
	по дисциплине «Высшая математика» - М.: МИИТ,		

	2010. – 45 c.	
2	Эльсгольц Л.Э. Дифференциальные уравнения М.: Едиториал УРСС, 2023. – 312 с.	НТБ МИИТ
3	Мышкис, А. Д. Лекции по высшей математике: учебное пособие / А. Д. Мышкис. — 6-е изд.,испр. — Санкт-Петербург: Лань, 2022. — 688 с. — ISBN 978-5-8114-0572-5	https://e.lanbook.com/book/210314
4	Петровский, И. Г. Лекции по теории обыкновенных дифференциальных уравнений: учебное пособие / И. Г. Петровский; под редакцией А. Д. Мышкиса, О. А. Олейник. — Москва: ФИЗМАТЛИТ, 2009. — 208 с. — ISBN 978-5-9221-1144-7	https://e.lanbook.com/book/59554
5	Арнольд, В. И. Обыкновенные дифференциальные уравнения: учебник / В. И. Арнольд. — 2-е изд., стереотип. — Москва: МЦНМО, 2020. — 341 с. — ISBN 978-5-4439-3254-5	https://e.lanbook.com/book/267635
6	Обыкновенные дифференциальные уравнения: Задачи и примеры с подробными решениями: Учебное пособие. Изд. 4-е., испр. – М.: Едиториал УРСС, 2002. – 256 с.	НТБ МИИТ
7	Филиппов А.Ф. Сборник задач по дифференциальным уравнениям: - М.: Интеграл-Пресс, 1998. – 208 с.	НТБ МИИТ
8	Амелькин В.В. Дифференциальные уравнения в приложениях – М.: Едиториал УРСС, 2021. – 206 с.	НТБ МИИТ
9	Федорюк М.В. Обыкновенные дифференциальные уравнения. – М.: Наука. Гл. ред. физмат. лит., 1980. – 352 с.	НТБ МИИТ

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Официальный сайт РУТ (МИИТ) (https://www.miit.ru/).

Научно-техническая библиотека РУТ (МИИТ) (http:/library.miit.ru).

Образовательная платформа «Юрайт» (https://urait.ru/).

Общие информационные, справочные и поисковые системы «Консультант Плюс», «Гарант».

Электронно-библиотечная система издательства «Лань» (http://e.lanbook.com/).

Электронно-библиотечная система ibooks.ru (http://ibooks.ru/).

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Microsoft Internet Explorer (или другой браузер). Операционная система Microsoft Windows. Microsoft Office.

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебные аудитории для проведения учебных занятий, оснащенные компьютерной техникой и наборами демонстрационного оборудования.

9. Форма промежуточной аттестации:

Экзамен в 4 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

профессор, профессор, д.н. кафедры «Цифровые технологии управления транспортными процессами»

А.С. Братусь

Согласовано:

Заведующий кафедрой ЦТУТП

В.Е. Нутович

Председатель учебно-методической

комиссии Н.А.Клычева