МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 01.03.02 Прикладная математика и информатика, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Дифференциальные уравнения

Направление подготовки: 01.03.02 Прикладная математика

И

информатика

Направленность (профиль): Математическое моделирование и системный

анализ

Форма обучения: Очная

> Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 5665

Подписал: заведующий кафедрой Нутович Вероника

Евгеньевна

Дата: 08.04.2025

1. Общие сведения о дисциплине (модуле).

Целью освоения учебной дисциплины (модуля) являются:

- освоение одного из самых развитых современных языков описания различных математических моделей - языка дифференциальных уравнений.

Задачами дисциплины (модуля) являются:

- изучение базовых понятий теории дифференциальных уравнений;
- освоение основных приёмов решения практических задач по темам дисциплины;
- овладение студентами основами дисциплины и его приложений в различных областях знаний, необходимыми для успешного изучения последующих математических и других естественнонаучных дисциплин.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-1** Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной деятельности;
- **ОПК-3** Способен применять и модифицировать математические модели для решения задач в области профессиональной деятельности.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- -постановки задач, основные теоремы о существовании и единственности решения задач;
 - основные типы дифференциальных уравнений и методы их решений;
 - основные понятия теории устойчивости.

Уметь:

- решать дифференциальные уравнения первого, второго и высших порядков;
- находить решение начальной и краевой задач для дифференциальных уравнения;
- решать системы дифференциальных уравнений, исследовать устойчивость решений.

Владеть:

- навыками применения различных методов решения однородных и неоднородных дифференциальных уравнений и систем уравнений;
 - методами исследования устойчивости решений.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 4 з.е. (144 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
	Всего	Семестр №4
Контактная работа при проведении учебных занятий (всего):	80	80
В том числе:		
Занятия лекционного типа	32	32
Занятия семинарского типа	48	48

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 64 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

No			
Π/Π	Тематика лекционных занятий / краткое содержание		
1	Основные понятия и определения теории дифференциальных уравнений		
	Рассматриваемые вопросы:		
	- интегральная кривая;		
	- геометрическая интерпретация;		
	- метод изоклин;		
	- метод Эйлера.		
2	Теорема о существовании и единственности решения задачи Коши		
	Рассматриваемые вопросы:		
	- лемма об эквивалентности;		
	- лемма Грануолла;		
	- условие Липшица;		
	- метод последовательных приближений.		
3	Доказательство теоремы о существовании и единственности решения задачи Коши		
	Рассматриваемые вопросы:		
	- постороение ряда последовательных приближений;		
	- доказательство равномерной сходимости ряда;		
	- доказательсво единственности решения.		
4	Следствия теоремы существования и единственности		
	Рассматриваемые вопросы:		
	- продолжение решения;		
	- непрерывная зависимость от начальных данных;		
	- непрерывная зависимость от параметров.		
5	Дифференциальные уравнения 1-го порядка		
	Рассматриваемые вопросы:		
	- уравнения с разделяющимися переменными		
	- однородные уравнения;		
	- линейные уравнения первого порядка;		
	- уравнение Бернулли;		
	- уравнение Риккати; - уравнения в полных дифференциалах;		
	- уравнения в полных дифференциалах, - интегрирующий множитель;		
	- дифференциальные уравнения, не разрешенные относительно производной;		
	- дифференциальные уравнения 1-го порядка.		
6	Дифференциальные уравнения, не разрешенные относительно производной		
J	Рассматриваемые вопросы:		
	- теоремы сущестивования;		
	-д искриминантная кривая;		
	- огибающая семейства интегральных кривых;		
	- уравнения Клеро и Лагранжа.		
7	Дифференциальные уравнения высших порядков		
	Рассматриваемые вопросы:		
	- постановка задачи Коши;		
	- теорема существования и единственности;		
	- линейная зависимость и независимость вектор функций;		
	- определитель Вронского системы и его свойства;		
	- фундаментальная система решений для системы дифференциальных уравнений первого порядка;		
	- теорема о представлении решений в виде линейной комбинации вектор функций		
	фундаментальной системы;		
	- системы линейных уравнений с постоянными коэффициентами, методы отыскания решений		
	систем линейных уравнений с постоянными коэффициентами;		

No	
п/п	Тематика лекционных занятий / краткое содержание
11/11	- линейная независимость решений линейного уравнения высокого порядка, вид определителя
	Вронского в этом случае;
	- фундаментальная система решений линейного уравнения высокого порядка;
	- теорема о представлении решений в виде линейной комбинации вектор функций
	фундаментальной системы;
	- методы решения однородных линейных дифференциальных уравнений с постоянными
	коэффициентами;
	- методы решения неоднородных линейных уравнений с правой частью в виде квазимногочлена;
	- метод вариации произвольных постоянных Лагранжа.
8	Линейные дифференциальные уравнения с постоянными коэффициентами
	Рассматриваемые вопросы:
	- характеристическое уравнение;
	- случай вещественных и комплексных корней характеристического уравнения;
	- случай кратных корней характеристического урравнения;
	- методы решения неоднородных линейных уравнений с правой частью в виде квазимногочлена;
	- метод вариации произвольных постоянных Лагранжа.
9	Теория колебаний
	Рассматриваемые вопросы:
	- гармонические колебания;
	- явление резонанса;
	- задачи из теории колебаний;
	- решение уравнений с помощью рядов.
10	Системы дифференциальных уравнений первого порядка
	Рассматриваемые вопросы:
	- постановка задачи Коши;
	- теорема существования и единственности;
	- линейная зависимость и независимость вектор функций;
	- определитель Вронского системы и его свойства;
	- фундаментальная система решений для системы дифференциальных уравнений первого порядка;
	- теорема о представлении решений в виде линейной комбинации вектор функций фундаментальной системы;
	- системы линейных уравнений с постоянными коэффициентами, методы отыскания решений
	систем линейных уравнений с постоянными коэффициентами.
11	Вопросы теории устойчивости
11	Рассматриваемые вопросы:
	- классификация особых точек систем на плоскости;
	- устойчивость по Ляпунову;
	- понятие о функции Ляпунова.
12	Краевые задачи
	Рассматриваемые вопросы:
	- постановка краевых задач для уравнений второго порядка;
	- краевые задачи для уравнения второго порядка типа Штурма-Лиувилля.
L	1 1 1 VI VI VI

4.2. Занятия семинарского типа.

Практические занятия

No	
п/п	Тематика практических занятий/краткое содержание
1	Основные понятия и методы
1	В результате работы на практических занятиях на конкретных примерах студенты рассматривают
	интегральные кривые, учаться находить частные и общие решения, разбирают метод Эйлера для
	численного решения уравнений, рассматривают метод изоклин
2	Уравнения первого порядка 1
_	В результате работы на практических занятиях на конкретных примерах студенты учаться решать
	уравнения первого порядка с разделяющимися переменными.
3	Уравнения первого порядка 2
	В результате работы на практических занятиях на конкретных примерах студенты учаться решать
	однородные уравнения.
4	Уравнения первого порядка 3
+	В результате работы на практических занятиях на конкретных примерах студенты учаться решать
	линейные уравнения певрого порядка и уравнение Бернулли, уравнения Риккати.
5	Уравнения первого порядка 4
3	В результате работы на практических занятиях на конкретных примерах студенты учаться решать
	уравнения в полных дифференциалах; получают навыки применения метода интегрирующего
	множителя.
6	Уравнения первого порядка 5
	В результате работы на практических занятиях на конкретных примерах студенты учаться решать
	дифференциальные уравнения, не разрешенные относительно производной Клеро и Лагранжа.
7	Дифференциальные уравнения высших порядков
′	В результате работы на практических занятиях студенты на практических примерах получают
	навыки исследования линейных систем дифференциальных уравнений первого порядка,
	применения линейную зависимость и независимость векторов функций при решений задач,
	вычисления определителя Вронского системы функций; применения фундаментальной системы
	решений для системы дифференциальных уравнений первого порядка, изучают теорему о
	представлении решений в виде линейной комбинации вектора функций фундмаентальной системы
	решение уравнений в виде рядов.
8	Линейные дифференциальные уравнения с постоянеными коэфициентами
	В результате работы на практических занятиях студенты на практических примерах получают
	навыки решения различных линейных уравнений; находения решения неоднородных уравнений с
	правой частью ф ворме квазимногочлена; применения метода вариации произвольных постоянных
	Лагранжа.
9	Линейные системы дифференциальных уравнений первого порядка с постоянными
	коэффициентами
	В результате работы на практических занятиях студенты на практических примерах получают
	навыки решения систем; исследования характера особых точек, построения фазовых траекторий,
	исследования поведения фазовых траекторий вблизи особых точек.
10	Теория колебаний
	В результате работы на практических занятиях студенты получают навыки изучения поведения
	систем механики и физики.
11	Элементы теории устойчивости
	В результате работы на практических занятиях студенты на практических примерах рассматривают
	классификацию особых точек систем на плоскости, получают навыки исследования устойчивости
	этих точек по Ляпунову.
12	Краевые задачи
	В результате работы на практических занятиях студенты на практических примерах изучают виды
	краевых задач для уравнения второго порядка типа Штурма-Лиувилля.

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы	
1	Изучение учебной литературы из приведенных источников	
2	Подготовка к практическим занятиям	
3	Подготовка к промежуточной аттестации.	
4	Подготовка к текущему контролю.	

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/	Библиографическо е описание	Место доступа
П		1,4,-,1/-,-,1,-,1,-,1/-,1/-,1/-,1/-,1/-,1/-
1	Мышкис, А. Д. Лекции по высшей	https://search.rsl.ru/ru/record/01004406831?ysclid=mc95fowwzr460783
	•	
	математике:	
	учебное пособие /	
	А. Д. Мышкис. —	
	6-е изд.,испр. —	
	Санкт-Петербург:	
	Лань, 2022. — 688	
	c. — ISBN 978-5-	
	8114-0572-5	
2	Петровский, И. Г.	https://znanium.ru/read?id=254610 (дата обращения: 23.06.2025)
	Лекции по теории	•
	обыкновенных	
	дифференциальны	
	х уравнений:	
	учебное пособие /	
	И. Г. Петровский;	
	под редакцией А.	
	Д. Мышкиса, О. А.	
	Олейник. —	
	Москва:	
	ФИЗМАТЛИТ,	
2009. — 208 c. — ISBN 978-5-9221-		
	ISBN 978-5-9221-	
	1144-7	
3	Арнольд, В. И.	https://znanium.ru/read?id=309171 (дата обращения: 23.06.2025)
	Обыкновенные	
	дифференциальны	
	е уравнения:	

учебник / В. И.	
Арнольд. — 2-е	
изд., стереотип. —	
Москва : МЦНМО,	
2020. — 341 c. —	
ISBN 978-5-4439-	
3254-5	

- 6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).
 - Научно-техническая библиотека РУТ (МИИТ) (http://library.miit.ru);
- Информационный портал Научная электронная библиотека eLIBRARY.RU (www.elibrary.ru);
 - Образовательная платформа «Юрайт» (https://urait.ru/);
- Электронно-библиотечная система издательства «Лань» (http://e.lanbook.com/);
- Интернет-университет информационных технологий (http://www.intuit.ru/).
- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).
 - Операционная система Windows;
 - Microsoft Office;
 - MS Teams;
 - Поисковые системы.
- 8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебные аудитории для проведения учебных занятий, оснащенные компьютерной техникой и наборами демонстрационного оборудования.

9. Форма промежуточной аттестации:

Экзамен в 4 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

профессор, профессор, д.н. кафедры «Цифровые технологии управления транспортными процессами»

А.С. Братусь

Согласовано:

Заведующий кафедрой ЦТУТП

В.Е. Нутович

Председатель учебно-методической

комиссии Н.А. Андриянова