#### МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

#### ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

## «РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)



Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 01.03.02 Прикладная математика и информатика, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

## РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

#### Дифференциальные уравнения

Направление подготовки: 01.03.02 Прикладная математика

И

информатика

Направленность (профиль): Математическое моделирование и системный

анализ

Форма обучения: Очная

> Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 5665

Подписал: заведующий кафедрой Нутович Вероника

Евгеньевна

Дата: 01.09.2024

1. Общие сведения о дисциплине (модуле).

Целью освоения учебной дисциплины (модуля) являются:

- освоение одного из самых развитых современных языков описания различных математических моделей - языка дифференциальных уравнений.

Задачами дисциплины (модуля) являются:

- изучение базовых понятий теории дифференциальных уравнений;
- освоение основных приёмов решения практических задач по темам дисциплины;
- овладение студентами основами дисциплины и его приложений в различных областях знаний, необходимыми для успешного изучения последующих математических и других естественнонаучных дисциплин.
  - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-1** Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной деятельности;
- **ОПК-3** Способен применять и модифицировать математические модели для решения задач в области профессиональной деятельности.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

#### Знать:

- -постановки задач, основные теоремы о существовании и единственности решения задач;
  - основные типы дифференциальных уравнений и методы их решений;
  - основные понятия теории устойчивости.

#### Уметь:

- решать дифференциальные уравнения первого, второго и высших порядков;
- находить решение начальной и краевой задач для дифференциальных уравнения;
- решать системы дифференциальных уравнений, исследовать устойчивость решений.

#### Владеть:

- навыками применения различных методов решения однородных и неоднородных дифференциальных уравнений и систем уравнений;
  - методами исследования устойчивости решений.
  - 3. Объем дисциплины (модуля).
  - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 4 з.е. (144 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

| Тип учебных занятий                                       | Количество часов |            |
|-----------------------------------------------------------|------------------|------------|
| тип учесных занятии                                       |                  | Семестр №4 |
| Контактная работа при проведении учебных занятий (всего): | 96               | 96         |
| В том числе:                                              |                  |            |
| Занятия лекционного типа                                  | 48               | 48         |
| Занятия семинарского типа                                 | 48               | 48         |

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 48 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
  - 4. Содержание дисциплины (модуля).
  - 4.1. Занятия лекционного типа.

| No               |                                                                                           |  |  |
|------------------|-------------------------------------------------------------------------------------------|--|--|
| $\Pi/\Pi$        | Тематика лекционных занятий / краткое содержание                                          |  |  |
| 1                | Основные понятия и определения теории дифференциальных уравнений                          |  |  |
|                  | Рассматриваемые вопросы:                                                                  |  |  |
|                  | - интегральная кривая;                                                                    |  |  |
|                  | - геометрическая интерпретация;                                                           |  |  |
| - метод изоклин; |                                                                                           |  |  |
|                  | - метод Эйлера.                                                                           |  |  |
| 2                | Теорема о существовании и единственности решения задачи Коши                              |  |  |
|                  | Рассматриваемые вопросы:                                                                  |  |  |
|                  | - лемма об эквивалентности;                                                               |  |  |
|                  | - лемма Грануолла;                                                                        |  |  |
|                  | - условие Липшица;                                                                        |  |  |
|                  | - метод последовательных приближений.                                                     |  |  |
| 3                | Доказательство теоремы о существовании и единственности решения задачи Коши               |  |  |
|                  | Рассматриваемые вопросы:                                                                  |  |  |
|                  | - постороение ряда последовательных приближений;                                          |  |  |
|                  | - доказательство равномерной сходимости ряда;                                             |  |  |
|                  | - доказательсво единственности решения.                                                   |  |  |
| 4                | Следствия теоремы существования и единственности                                          |  |  |
|                  | Рассматриваемые вопросы:                                                                  |  |  |
|                  | - продолжение решения;                                                                    |  |  |
|                  | - непрерывная зависимость от начальных данных;                                            |  |  |
|                  | - непрерывная зависимость от параметров.                                                  |  |  |
| 5                | Дифференциальные уравнения 1-го порядка                                                   |  |  |
|                  | Рассматриваемые вопросы:                                                                  |  |  |
|                  | - уравнения с разделяющимися переменными                                                  |  |  |
|                  | - однородные уравнения;                                                                   |  |  |
|                  | - линейные уравнения первого порядка;                                                     |  |  |
|                  | - уравнение Бернулли;                                                                     |  |  |
|                  | - уравнение Риккати;<br>- уравнения в полных дифференциалах;                              |  |  |
|                  | - уравнения в полных дифференциалах, - интегрирующий множитель;                           |  |  |
|                  | - дифференциальные уравнения, не разрешенные относительно производной;                    |  |  |
|                  | - дифференциальные уравнения 1-го порядка.                                                |  |  |
| 6                | Дифференциальные уравнения, не разрешенные относительно производной                       |  |  |
| J                | Рассматриваемые вопросы:                                                                  |  |  |
|                  | - теоремы сущестивования;                                                                 |  |  |
|                  | -д искриминантная кривая;                                                                 |  |  |
|                  | - огибающая семейства интегральных кривых;                                                |  |  |
|                  | - уравнения Клеро и Лагранжа.                                                             |  |  |
| 7                | Дифференциальные уравнения высших порядков                                                |  |  |
|                  | Рассматриваемые вопросы:                                                                  |  |  |
|                  | - постановка задачи Коши;                                                                 |  |  |
|                  | - теорема существования и единственности;                                                 |  |  |
|                  | - линейная зависимость и независимость вектор функций;                                    |  |  |
|                  | - определитель Вронского системы и его свойства;                                          |  |  |
|                  | - фундаментальная система решений для системы дифференциальных уравнений первого порядка; |  |  |
|                  | - теорема о представлении решений в виде линейной комбинации вектор функций               |  |  |
|                  | фундаментальной системы;                                                                  |  |  |
|                  | - системы линейных уравнений с постоянными коэффициентами, методы отыскания решений       |  |  |
|                  | систем линейных уравнений с постоянными коэффициентами;                                   |  |  |

| No        |                                                                                                      |  |  |
|-----------|------------------------------------------------------------------------------------------------------|--|--|
| $\Pi/\Pi$ | Тематика лекционных занятий / краткое содержание                                                     |  |  |
| 11/11     | - линейная независимость решений линейного уравнения высокого порядка, вид определителя              |  |  |
|           | Вронского в этом случае;                                                                             |  |  |
|           | - фундаментальная система решений линейного уравнения высокого порядка;                              |  |  |
|           | - теорема о представлении решений в виде линейной комбинации вектор функций                          |  |  |
|           | фундаментальной системы;                                                                             |  |  |
|           | - методы решения однородных линейных дифференциальных уравнений с постоянными                        |  |  |
|           | коэффициентами;                                                                                      |  |  |
|           | - методы решения неоднородных линейных уравнений с правой частью в виде квазимногочлена;             |  |  |
|           | - метод вариации произвольных постоянных Лагранжа.                                                   |  |  |
| 8         | Линейные дифференциальные уравнения с постоянными коэффициентами                                     |  |  |
|           | Рассматриваемые вопросы:                                                                             |  |  |
|           | - характеристическое уравнение;                                                                      |  |  |
|           | - случай вещественных и комплексных корней характеристического уравнения;                            |  |  |
|           | - случай кратных корней характеристического урравнения;                                              |  |  |
|           | - методы решения неоднородных линейных уравнений с правой частью в виде квазимногочлена;             |  |  |
|           | - метод вариации произвольных постоянных Лагранжа.                                                   |  |  |
| 9         | Теория колебаний                                                                                     |  |  |
|           | Рассматриваемые вопросы:                                                                             |  |  |
|           | - гармонические колебания;                                                                           |  |  |
|           | - явление резонанса;                                                                                 |  |  |
|           | - задачи из теории колебаний;                                                                        |  |  |
|           | - решение уравнений с помощью рядов.                                                                 |  |  |
| 10        | Системы дифференциальных уравнений первого порядка                                                   |  |  |
|           | Рассматриваемые вопросы:                                                                             |  |  |
|           | - постановка задачи Коши;                                                                            |  |  |
|           | - теорема существования и единственности;                                                            |  |  |
|           | - линейная зависимость и независимость вектор функций;                                               |  |  |
|           | - определитель Вронского системы и его свойства;                                                     |  |  |
|           | - фундаментальная система решений для системы дифференциальных уравнений первого порядка;            |  |  |
|           | - теорема о представлении решений в виде линейной комбинации вектор функций фундаментальной системы; |  |  |
|           | - системы линейных уравнений с постоянными коэффициентами, методы отыскания решений                  |  |  |
|           | систем линейных уравнений с постоянными коэффициентами.                                              |  |  |
| 11        | Вопросы теории устойчивости                                                                          |  |  |
| 11        | Рассматриваемые вопросы:                                                                             |  |  |
|           | - классификация особых точек систем на плоскости;                                                    |  |  |
|           | - устойчивость по Ляпунову;                                                                          |  |  |
|           | - понятие о функции Ляпунова.                                                                        |  |  |
| 12        | Краевые задачи                                                                                       |  |  |
|           | Рассматриваемые вопросы:                                                                             |  |  |
|           | - постановка краевых задач для уравнений второго порядка;                                            |  |  |
|           | - краевые задачи для уравнения второго порядка типа Штурма-Лиувилля.                                 |  |  |
| L         | 1 1 1 VI VI VI                                                                                       |  |  |

# 4.2. Занятия семинарского типа.

## Практические занятия

| No  |                                                                                                                        |  |  |  |
|-----|------------------------------------------------------------------------------------------------------------------------|--|--|--|
| п/п | Тематика практических занятий/краткое содержание                                                                       |  |  |  |
| 1   |                                                                                                                        |  |  |  |
| 1   | Основные понятия и методы В результате работы на практических занятиях на конкретных примерах студенты рассматривают   |  |  |  |
|     | интегральные кривые, учаться находить частные и общие решения, разбирают метод Эйлера для                              |  |  |  |
|     | численного решения уравнений, рассматривают метод изоклин                                                              |  |  |  |
| 2   | Уравнения первого порядка 1                                                                                            |  |  |  |
| _   | В результате работы на практических занятиях на конкретных примерах студенты учаться решать                            |  |  |  |
|     | уравнения первого порядка с разделяющимися переменными.                                                                |  |  |  |
| 3   | Уравнения первого порядка 2                                                                                            |  |  |  |
|     | В результате работы на практических занятиях на конкретных примерах студенты учаться решать                            |  |  |  |
|     | однородные уравнения.                                                                                                  |  |  |  |
| 4   |                                                                                                                        |  |  |  |
| +   | Уравнения первого порядка 3 В результате работы на практических занятиях на конкретных примерах студенты учаться решаг |  |  |  |
|     | линейные уравнения певрого порядка и уравнение Бернулли, уравнения Риккати.                                            |  |  |  |
| 5   | Уравнения первого порядка 4                                                                                            |  |  |  |
| 3   | В результате работы на практических занятиях на конкретных примерах студенты учаться решать                            |  |  |  |
|     | уравнения в полных дифференциалах; получают навыки применения метода интегрирующего                                    |  |  |  |
|     | множителя.                                                                                                             |  |  |  |
| 6   | Уравнения первого порядка 5                                                                                            |  |  |  |
|     | В результате работы на практических занятиях на конкретных примерах студенты учаться решать                            |  |  |  |
|     | дифференциальные уравнения, не разрешенные относительно производной Клеро и Лагранжа.                                  |  |  |  |
| 7   | Дифференциальные уравнения высших порядков                                                                             |  |  |  |
| ′   | В результате работы на практических занятиях студенты на практических примерах получают                                |  |  |  |
|     | навыки исследования линейных систем дифференциальных уравнений первого порядка,                                        |  |  |  |
|     | применения линейную зависимость и независимость векторов функций при решений задач,                                    |  |  |  |
|     | вычисления определителя Вронского системы функций; применения фундаментальной системы                                  |  |  |  |
|     | решений для системы дифференциальных уравнений первого порядка, изучают теорему о                                      |  |  |  |
|     | представлении решений в виде линейной комбинации вектора функций фундмаентальной системы                               |  |  |  |
|     | решение уравнений в виде рядов.                                                                                        |  |  |  |
| 8   | Линейные дифференциальные уравнения с постоянеными коэфициентами                                                       |  |  |  |
|     | В результате работы на практических занятиях студенты на практических примерах получают                                |  |  |  |
|     | навыки решения различных линейных уравнений; находения решения неоднородных уравнений с                                |  |  |  |
|     | правой частью ф ворме квазимногочлена; применения метода вариации произвольных постоянных                              |  |  |  |
|     | Лагранжа.                                                                                                              |  |  |  |
| 9   | Линейные системы дифференциальных уравнений первого порядка с постоянными                                              |  |  |  |
|     | коэффициентами                                                                                                         |  |  |  |
|     | В результате работы на практических занятиях студенты на практических примерах получают                                |  |  |  |
|     | навыки решения систем; исследования характера особых точек, построения фазовых траекторий,                             |  |  |  |
|     | исследования поведения фазовых траекторий вблизи особых точек.                                                         |  |  |  |
| 10  | Теория колебаний                                                                                                       |  |  |  |
|     | В результате работы на практических занятиях студенты получают навыки изучения поведения                               |  |  |  |
|     | систем механики и физики.                                                                                              |  |  |  |
| 11  | Элементы теории устойчивости                                                                                           |  |  |  |
|     | В результате работы на практических занятиях студенты на практических примерах рассматривают                           |  |  |  |
|     | классификацию особых точек систем на плоскости, получают навыки исследования устойчивости                              |  |  |  |
|     | этих точек по Ляпунову.                                                                                                |  |  |  |
| 12  | Краевые задачи                                                                                                         |  |  |  |
|     | В результате работы на практических занятиях студенты на практических примерах изучают виды                            |  |  |  |
|     | краевых задач для уравнения второго порядка типа Штурма-Лиувилля.                                                      |  |  |  |

#### 4.3. Самостоятельная работа обучающихся.

| <b>№</b><br>п/п | Вид самостоятельной работы                            |
|-----------------|-------------------------------------------------------|
| 1               | Изучение учебной литературы из приведенных источников |
| 2               | Подготовка к практическим занятиям                    |
| 3               | Подготовка к промежуточной аттестации.                |
| 4               | Подготовка к текущему контролю.                       |

# 5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

| <b>№</b><br>π/π | Библиографическое описание                       | Место доступа                     |
|-----------------|--------------------------------------------------|-----------------------------------|
| 1               | Петровский, И. Г. Лекции по теории               | https://znanium.ru/read?id=254610 |
|                 | обыкновенных дифференциальных уравнений:         | (дата обращения: 23.06.2025)      |
|                 | учебное пособие / И. Г. Петровский; под          |                                   |
|                 | редакцией А. Д. Мышкиса, О. А. Олейник. —        |                                   |
|                 | Москва : ФИЗМАТЛИТ, 2009. — 208 с. — ISBN        |                                   |
|                 | 978-5-9221-1144-7                                |                                   |
| 2               | Арнольд, В. И. Обыкновенные дифференциальные     | https://znanium.ru/read?id=309171 |
|                 | уравнения : учебник / В. И. Арнольд. — 2-е изд., | (дата обращения: 23.06.2025)      |
|                 | стереотип. — Москва : МЦНМО, 2020. — 341 с. —    |                                   |
|                 | ISBN 978-5-4439-3254-5                           |                                   |

- 6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).
  - Научно-техническая библиотека РУТ (МИИТ) (http://library.miit.ru);
- Информационный портал Научная электронная библиотека eLIBRARY.RU (www.elibrary.ru );
  - Образовательная платформа «Юрайт» (https://urait.ru/);
- Электронно-библиотечная система издательства «Лань» (http://e.lanbook.com/);
  - Электронно-библиотечная система ibooks.ru (http://ibooks.ru/).
- Интернет-университет информационных технологий (http://www.intuit.ru/).
- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

- Операционная система Windows;
- Microsoft Office;
- MS Teams;
- Поисковые системы.
- 8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебные аудитории для проведения учебных занятий, оснащенные компьютерной техникой и наборами демонстрационного оборудования.

9. Форма промежуточной аттестации:

Экзамен в 4 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

### Авторы:

профессор, профессор, д.н. кафедры «Цифровые технологии управления транспортными процессами»

А.С. Братусь

Согласовано:

Заведующий кафедрой ЦТУТП

В.Е. Нутович

Председатель учебно-методической

комиссии Н.А. Андриянова