МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы специалитета по специальности

23.05.05 Системы обеспечения движения поездов, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Инженерная компьютерная графика

Специальность: 23.05.05 Системы обеспечения движения

поездов

Специализация: Электроснабжение железных дорог

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 3409

Подписал: заведующий кафедрой Карпычев Владимир

Александрович

Дата: 01.06.2024

1. Общие сведения о дисциплине (модуле).

Целями освоения учебной дисциплины (модуля) Инженерная компьютерная графика являются:

- научить студента выполнять эскизы, рабочие чертежи и наглядные изображения деталей машин, а также сборочные чертежи разъёмных резьбовых со-единений;
- реализовать полученные знания в компьютере для вычерчивания различных деталей.

Задачами освоения учебной дисциплины (модуля) Инженерная компьютерная графика являются:

- внедрение практикоориентированности обучения;
- формирование у обучающихся способности применять теоретические знания для решения практических задач;
- развитие у обучающихся навыков выполнения качественных графических работ, отвечающих требованиям ЕСКД;
- -формирование навыка оценки правильности выполнения конструкторских документов;
- повышение конкурентоспособности выпускников университета на рынке труда.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-2** Способен понимать принципы работы современных информационных технологий и использовать их для решения задач профессиональной деятельности;
- **ОПК-4** Способен выполнять проектирование и расчет транспортных объектов в соответствии с требованиями нормативных документов;
- **ПК-3** Способен проводить разработку и экспертизу проектов систем электроснабжения железных дорог и метрополитенов, их отдельных элементов и технологических процессов, в том числе, с использованием систем автоматизированного проектирования?.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- современные образовательные технологии, теорию информации в современном обществе, об опасностях и угрозах недостоверной информации;
- принципы и этапы проектирования в соответствии с требованиями ЕСКД;
- правила формирования комплектов конструкторских документов в области электроснабжения железных дорог и метрополитенов и их отдельных элементов.

Уметь:

- находить нужную информацию, приобретать новые знания для решения задач в области инженернойц графики;
- получать информацию, необходимую для профессиональной деятельности из конструкторской документации;
- формировать графические изображения в соответствии с этапами работы над проектами;
- выполнять без ошибок чертежи, схемы и другие конструкторские документы в соответствии с требованиями ЕСКД.

Владеть:

- современными образовательными и информационными технологиями, навыками работы с программными средствами общего назначения, для решения задач инженерной графики;
 - чертежом, как средством выражения технической мысли;
- навыками практического применения теоретических знаний для работы над проектами с учетом текущего этапа;
- навыками комплектования пректной конструкторской документации для их дальнейшей регистрации и хранения.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 4 з.е. (144 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

	Тип учебных занятий	Коли	Количество часов	
		Всего	Семестр №1	
Контактная работа	при проведении учебных занятий (всего):	48	48	

В том числе:		
Занятия лекционного типа		16
Занятия семинарского типа	32	32

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 96 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

$N_{\underline{0}}$	Toxograma waxayya waxayya ya bayagayyii / xanaayya aa yanayaayya	
п/п	Тематика лекционных занятий / краткое содержание	
1	Предмет и методы инженерной графики.	
	1. Основы построения изображений в конструкторских документах. Эпюр точки, метод Гаспара	
	Монжа.	
	2. Связь между проекциями и координатами точки.	
2	Проекции прямой линии и плоскости, как элемента в конструкторской	
	документации.	
	1. Длина отрезка прямой.	
	2. Прямые и плоскости частного положе-ния.	
	3. Взаимное положение прямой и плоскости.	
	4. Теорема о проецировании прямого угла.	
	5. Взаимное расположение плоскостей.	
3	Способ замены плоскостей проекций, как основы сечений и разрезов.	
	а) преобразовать прямую общего положения в прямую уровня;	
	б) преобразовать прямую общего положения в проецирующую;	
	в) преобразовать плоскость общего положения в проецирующую;	
	г) преобразовать плоскость общего положения в плоскость уровня.	
4	Многогранники и поверхности.	
	1. Изображения многогранников.	
	2. Сечения многогранников проецирующей плоскостью.	
	3. Пересечение прямой с многогранником.	
	4. Поверхности: линейчатые и циклические (общие сведения).	
	5. Поверхности вращения общего вида.	

№ п/п	Тематика лекционных занятий / краткое содержание	
	6. Поверхности вращения 2-го порядка.	
	7. Каркасный способ решения позиционных задач с помощью линий очертания.	
	8. Способ вспомогательных плоскостей уровня.	
	9. Способ вспомогательных концентрических сфер.	
5	Изображения, виды, разрезы, сечения.	
	1. Общие правила выполнения чертежей. Основные положения	
	2. Правила выполнения аксонометрических изображений	
	3. Способы нанесения размеров на чертеже в зависимости от базы.	
6	Виды изделий и конструкторских документов.	
	1. Деталь, сборочная единица, сборочный узел, комплекс, комплект.	
	2. Виды конструкторских документов.	
	3. Основная надпись для разных документов	
	4. Правила выполнения сборочных чертежей	
	5. Условности и упрощения	
	6. Элементы резьб на сборочных чертежах	
	7. Размеры и обозначения	
	8. Правила заполнения спецификации	
	9. Этапы работы над проектами	

4.2. Занятия семинарского типа.

Практические занятия

№	Томотимо произвимомим роматий/иролисо со нерукомие	
Π/Π	Тематика практических занятий/краткое содержание	
1	Предмет и методы начертательной геометрии и инженерной графики.	
	Основные требования ГОСТов к выполнению и оформлению чертежей. ГОСТы 2.301-2.304-81.	
	ЕСКД. Форматы. Масштабы. Линии. Шрифты чертежные. ГОСТ 2.307-68. Нанесение размеров и	
	предельных отклонений. Виды. Основные понятия. ГОСТ 2.305-2008. Выдача работы №1 по И.Г	
	«Стиль линий чертежа» ФАЗ [1]	
	Работа частично выполняется в аудитории.	
	Рабочая тетрадь (Р.Т.) Задачи №1,2,3,4*. [3].	
2	Проекции прямой линии, как элемента в конструкторской документации.	
	Р.Т. Зад. №5-9*, 10, 11, 12*.	
3	Проекции плоскости, как элемента конструкторской документации.	
	Рабочая тетрадь (Р.Т.). Задачи №13*,14,15,16*,17.	
4	Пересекающиеся плоскости; взаимное расположение прямой и плоскости.	
	Рабочая тетрадь зад. №18,19, 20*, 21*, 22*, 23*.	
	Задача №1. Построение 3-х видов гранного с вырезом. Планирование формата ФАЗ [4].	
5	Способ замены плоскостей проекций, как основы сечений и разрезов.	
	Р.Т. Зад. № 24,25,26*,27,28*,29,30*,31*,32 Прием работы №1 ФАЗ - 30%.№1.	
	Контрольная работа №1 «Положение прямых и плоскостей».	
6	Многогранники и поверхности.	
	Выдача работы №2 – «Проекционное черчение» из М.У. [4]. Задача №1. Построение 3-х видов	
	гранного с вырезом . ФАЗ	
	ГОСТ 2.317-69 «Аксонометрические проекции» Задача №1: построение гранного тела с вырезом в	
	прямоугольной изометрии [7]	
	Р.Т.: зад. № 33,34,35*.	
7	Поверхности вращения и их свойства.	
	Р.Т.: зад. №39*, 40, 41.	

No	
п/п	Тематика практических занятий/краткое содержание
8	Взаимное пересечение поверхностей вращения, задача №5.
	1. Способ вспомогательных плоскостей уровня.
	2. Способ вспомогательных концентрических сфер.
	Р.Т.: зад. № 42,426*,43*,44.
	П С УС
	Приём работы №2: построение гранного тела с вырезом и ее прямоугольной изометрии. Прием рабочих тетрадей.
9	Виды изделий и конструкторских документов. САПР.
	Общее знакомство с интерфейсом системы КОМПАС-ГРАФИК или AutoCAD
	Инструментальные панели и команды создания и редактирования изображения
	Вычерчивание фланца в приложении КОМПАС или AutoCAD. Простановка размеров. 10%.
10	Изображения, виды, разрезы, сечения.
	Общие правила выполнения чертежей. Основные положения
	Построение работы №2– «Проекционное черчение» из М.У. [4]. Задача №1. Построение 3-х видов
	гранного с вырезом . прошлого семестра Вычерчивается в системе КОМПАС или AutoCAD, 10%
	Выдача работы №3– «Проекционное черчение» из М.У. [4]. Задача №3. Построение 3-х видов
	детали и выполнение разрезов и сечений. Простановка размеров. Вычерчивается в системе
1.1	КОМПАС или AutoCAD, 10%.
11	Изображение резьбы, различные виды резьб, их условное изображение и
	обозначение на чертеже, элементы резьбы.
	Продолжение работы
	Задача №3. Построение 3-х видов детали и выполнение разрезов и сечений. Простановка размеров. Вычерчивается в системе КОМПАС или AutoCAD, 10%.
	вычерчивается в системе комптас или Ацюсав, 10%.
	Выдача работы №4 – «Соединение двух деталей болтом» (вставка из библиотеки) со
	спецификацией. 2 листа ФА4, 25%. Варианты заданий 1-32 [8].
12	Сборочные чертежи.
	Выдача работы №4«Соединение двух деталей шпилькой» (упрощённый вариант и вариант вставки
	из библиотеки) в приложении со спецификацией. 2 листа ФА4?ФА3, 25%. Варианты заданий 1-32
	[8].
13	Эскизное исполнение рабочего чертежа детали с требованиями производства.
	Выдача работы №5: «Съемка эскиза одной детали» рабочий чертеж этой же детали (компьютерный
	вариант)
	1. Съёмка эскиза индивидуальной детали: выбор главного вида, необходимых допол-нительных видов, сечений и разрезов [9]. 10%.
14	Нанесение размеров на чертежах в зависимости от формы детали.
14	Продолжение работы №5 на бумаге в клетку. Измерение деталей. Простановка размеров. 10%.
15	Виды соединений деталей.
15	Рабочий чертеж детали выполняется в системе КОМПАС или AutoCAD, 20%. Оформление эскиза
	детали и её компьютерного варианта. Чертёж эскиза должен занимать 60-70% площади рабочего
	поля формата.
16	Обозначение изделий и конструкторских документов.
	Оформление всех чертежей в соответствии с нормами ГОСТов. Собрать выполненные работы с
	учетом правил хранения конструкторских документов
	Зачетная работа по инженерной графике – «По двум заданным проекциям детали построить третью
	проекцию и выполнить необходимые разрезы». Оформить чертёж и поставить размеры.

4.3. Самостоятельная работа обучающихся.

№	Руун оомоотоятом уюй тоботу	
Π/Π	Вид самостоятельной работы	
1	Подготовка к практическим занятиям.	
2	Изучение дополнительной литературы.	
3	Работа с лекционным материалом.	
4	Выполнение расчетно-графической работы.	
5	Подготовка к промежуточной аттестации.	
6	Подготовка к текущему контролю.	

- 4.4. Примерный перечень тем расчетно-графических работ Работа №1 «Проекционное черчение» по различным вариантам:
- 1) Построение правильной шестигранной пирамиды.
- 2) Построение правильной пятигранной пирамиды.
- 3) Построение четырехгранной пирамиды.
- 4) Построение правильной шестигранной усеченной пирамиды.
- 5) Построение правильной пятигранной усеченной пирамиды.
- 6) Построение правильной шестигранной призмы.
- 7) Построение правильной пятигранной призмы.
- 8) Построение четырехгранной призмы.
- 9) Построение четырехгранной призмы с наклонным срезом.
- 10) Построение треугольной призмы.

Работа №2 «Виды, разрезы». Построение трех видов детали с фронтальным и профильным разрезами. Выполняется по различным вариантам с соблюдением требований ЕСКД.

- 1) Построение корпусной детали с круглым фланцем.
- 2) Построение корпусной детали с прямоугольным фланцем.
- 3) Построение корпусной детали с ребрами жесткости.
- 4) Построение корпусной детали с продольным вырезом.
- 5) Построение корпусной детали с поперечным отверстием.
- 6) Построение корпусной детали с коническими и призматическими элементами.
- 7) Построение корпусной детали цилиндрической формы и продольными отверстиями разных диаметров.
- 8) Построение корпусной детали цилиндрической формы и попепечным отверстием.

- 9) Построение корпусной детали с продольным и ропечечным вырезом.
- 10) Построение крышки сальника с фланцевой поверхностью.

Работа №3 – «Соединение двух деталей болтом и шпилькой» на формате АЗ/А4 выполняется в приложении КОМПАС-ГРАФИК или AutoCAD по предварительным расчетам.

- 1) Болтом с заданным диаметром с крупным шагом и шпилькой с заданным диаметром с мелеким шагом, если длина ввинчиваемого конца равна диаметру.
- 2) Болтом с заданным диаметром с мелким шагом и шпилькой с заданным диаметром с крупным шагом, если длина ввинчиваемого конца равна диаметру.
- 3) Болтом с заданным диаметром с крупным шагом, если толщина скрепляемых деталей больше диаметра в 2 раза и шпилькой с заданным диаметром с мелеким шагом, если длина ввинчиваемого конца равна 1,25 диаметра.
- 4) Болтом с заданным диаметром с мелким шагом, если толщина скрепляемых деталей больше диаметра в 2 раза и шпилькой с заданным диаметром с крупным шагом, если длина ввинчиваемого конца равна 1,25 диаметра.
- 5) Болтом с заданным диаметром с крупным шагом, если толщина скрепляемых деталей больше диаметра в 1,5 раза и шпилькой с заданным диаметром с мелеким шагом, если длина ввинчиваемого конца равна 1,6 диаметра.
- 6) Болтом с заданным диаметром с мелким шагом, если толщина скрепляемых деталей больше диаметра в 1,5 раза и шпилькой с заданным диаметром с крупным шагом, если длина ввинчиваемого конца равна 1,6 диаметра.
- 7) Болтом с заданным диаметром с крупным шагом, если толщина скрепляемых деталей больше диаметра в 3 раза и шпилькой с заданным диаметром с мелеким шагом, если длина ввинчиваемого конца равна 2 диаметра.
- 8) Болтом с заданным диаметром с мелким шагом, если толщина скрепляемых деталей больше диаметра в 3 раза и шпилькой с заданным диаметром с крупным шагом, если длина ввинчиваемого конца равна 2 диаметра.
- 9) Болтом с заданным диаметром с крупным шагом, если скрепляются 3 детали и шпилькой с заданным диаметром с мелеким шагом, если применяется гайка со 2 конструктивным исполнением.

10) Болтом с заданным диаметром с мелким шагом, если скрепляются 3 детали и шпилькой с заданным диаметром с крупным шагом, если применяется гайка со 2 конструктивным исполнением.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

	, ,	
№ п/п	Библиографическое описание	Место доступа
11/11		
1	Нанесение размеров на чертежах изделий	URL:
	машиностроения В. Н. Аверин, А. Д. Гвоздев, И.	https://e.lanbook.com/book/367577
	Ф. Куколева. Методические указания Москва:	(дата обращения: 25.06.2025).
	РУТ (МИИТ), — 46 с., 2023	
2	Особенности построения изображений тел и	URL:
	деталей на ортогональных чертежах Аверин В. Н.,	https://e.lanbook.com/book/367583
	Ларина С. В., Тарасова А. И. Методические	
	указания к практическим занятиям Москва : РУТ	
	(МИИТ), — 15 с., 2023	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

АСКОН

http://www.ascon.ru/ или https://www.autodesk.ru

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Для работы в компьютерном классе необходимо программное обеспечение инженерной графики «Компас 3Д», версия не ниже 13 с установленной операционной системой Windows XP или Windows 7.

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Для осуществления образовательного процесса по дисциплине «Инженерная графика и компьютерная графика» должен быть обеспечен

доступ в компьютерный класс, оснащенный компьютерами с процессорами не ниже Intel Core 13 с оперативной памятью не ниже 4 Gb.

9. Форма промежуточной аттестации:

Зачет в 1 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, к.н. кафедры «Машиноведение, проектирование, стандартизация и сертификация»

А.Б. Болотина

Согласовано:

Заведующий кафедрой ЭЭТ

М.В. Шевлюгин

Заведующий кафедрой МПСиС

В.А. Карпычев

Председатель учебно-методической

комиссии С.В. Володин