МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы магистратуры по направлению подготовки 09.04.01 Информатика и вычислительная техника, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Интеллектуальные системы для транспортной логистики

Направление подготовки: 09.04.01 Информатика и вычислительная

техника

Направленность (профиль): Искусственный интеллект и предиктивная

аналитика в транспортных системах

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 5665

Подписал: заведующий кафедрой Нутович Вероника

Евгеньевна

Дата: 01.09.2025

1. Общие сведения о дисциплине (модуле).

Целью дисциплины «Интеллектуальны системы для транспортной логистики» является формирование у студента представления о приницпах и устройстве беспилотных транспортных средств.

Задачи данной дисциплины:

- изучение принципов работы беспилотного транспортного средства;
- изучение технологий для работы беспилотного транспортного средства;
- изучение преимуществ и недостатков беспилотных транспортных средств;
- принципов построения программного обеспечения для управления беспилотными транспортными средствами.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-1** Способен самостоятельно приобретать, развивать и применять математические, естественнонаучные, социально-экономические и профессиональные знания для решения нестандартных задач, в том числе в новой или незнакомой среде и в междисциплинарном контексте;
- **ОПК-3** Способен анализировать профессиональную информацию, выделять в ней главное, структурировать, оформлять и представлять в виде аналитических обзоров с обоснованными выводами и рекомендациями;
- **ОПК-5** Способен разрабатывать и модернизировать программное и аппаратное обеспечение информационных и автоматизированных систем;
- **ПК-4** Способен проектировать, разрабатывать, тестировать и разворачивать интеллектуальные системы в соответствии с DevOps и MLOps методологиями.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Уметь:

- применять технические средства для разработки беспилотных транспортных средств;
- применять программные средства для разработки беспилотных транспортных средств;

- анализировать профессиональную информацию, структурировать и представлять в виде аналитических обзоров;
- разрабатывать и модернизировать программное и аппаратное обеспечение информационных и автоматизированных систем.

Знать:

- приницпы работы беспилотных транспортных средств;
- приницп работы технологии LiDAR;
- принцип работы GNSS;
- принцип работы системы распознавания образов.

Владеть:

- навыком разработки программного обеспечения для управления беспилотным транспортным средством;
- навыками работы с различными датчиками, применяемыми в технологии беспилотного транспорта ADAS: лидары, радары, камеры и ультразвуковые датчики;
- навыками работы с различными GNSS-системами (Global Navigation Satellite System);
- навыками выбора способа повышения точности приема: IMU (Инерциальный измерительный модуль), RTK-поправки, CAN-шина.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 4 з.е. (144 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Type vyrobyn vy polygrydd	Количество часов	
Тип учебных занятий		Семестр №3
Контактная работа при проведении учебных занятий (всего):	32	32
В том числе:		
Занятия лекционного типа	16	16
Занятия семинарского типа	16	16

3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с

педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 112 академических часа (ов).

3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.

4. Содержание дисциплины (модуля).

4.1. Занятия лекционного типа.

No	Тематика лекционных занятий / краткое содержание		
Π/Π			
1	Беспилотные транспортные системы.		
	Рассматриваемые вопросы:		
	- история развития беспилотных транспортных систем;		
	- разработчики беспилотных странспортных систем;		
2	Развитие беспилотных транспортных систем.		
	Рассматриваемые вопросы:		
	- беспилотные транспортные системы в России;		
	- перспективы развития беспилотного транспорта в России.		
3	Особенности беспилотных транспортных систем.		
	Рассматриваемые вопросы:		
	- преимущества беспилотного транспорта;		
	- недостатки беспилотного транспорта.		
4	Технологии беспилотного транспорта. Часть 1.		
	Рассматриваемые вопросы:		
	- ADAS;		
	- GNSS.		
5	Технологии беспилотного транспорта. Часть 2.		
	Рассматриваемые вопросы:		
	- лидар;		
	- камеры;		
	- программное обеспечение.		
6	Искусственный интеллект на транспорте.		
	Рассматриваемые вопросы:		
	- особенности искусственного интеллекта на транспорте;		
	- искусственный интеллект на транспорте в России.		
7	Применение искусственного интеллекта на транспорте		
	Рассматриваемые вопросы:		
	- аспекты внедрения искусственного интеллекта на транспорте и в критически ответственных		
	секторах;		

№ п/п	Тематика лекционных занятий / краткое содержание
	- тенденции и факторы, содействующие внедрению ИИ
	- искусственный интеллект на транспорте в мире.

4.2. Занятия семинарского типа.

Практические занятия

No	Тематика практических занятий/краткое содержание			
п/п				
1	Технология ADAS			
	В результате выполнения практической работы студенты ознакомятся с технологией беспилотного			
	транспорта ADAS и выделят 6 основных компонентов системы:			
	- датчики;			
	- картографические и навигационные системы;			
	- алгоритмы ПО;			
	- процессоры;			
	- исполнительные блоки (приводные устройства);			
	- модули подключаемости.			
2	Технология ADAS. Датчики.			
	В результате выполнения практической работы студенты ознакомятся с работой различных			
	датчиках, применяемых в технологии беспилотного транспорта ADAS: лидары, радары, камеры и			
	ультразвуковые датчики.			
3	Технология ADAS. Картографические и навигационные системы.			
	В результате выполнения практической работы студенты ознакомятся с принципом работы			
	различных GNSS-систем (Global Navigation Satellite System).			
4	Технология ADAS. Алгоритмы ПО.			
	В результате выполнения практической работы студенты рассмотрят различные библиотеки ПО			
	систем технического зрения, системы кругового обзора, системы контроля слепых зон, системы			
5	ночного видения.			
3				
	В результате выполнения практической работы студенты ознакомятся с особенностями операционных систем беспилотного транспорта.			
6	Технология GNSS			
0				
	В результате выполнения практической работы студенты ознакомятся с технологией беспилотного транспорта GNSS (Global Navigation Satellite System) и изучат основные способы повышения			
	точности приема: IMU (Инерциальный измерительный модуль), RTK-поправки, CAN-шина.			
7	Технологии беспилотного транспорта.			
′	В рамках выполнения практических работ студент получит навыки разработки программного			
	обеспечения для управления беспилотным транспортом.			
8	Алгоритмы построения пути для беспилотного автомобиля			
	В рамках выполнения практических работ студент получит навыки построения пути для			
	беспилотного автомобиля и ознакомится с основными алгоритмами графов.			
9	Технология ADAS. Модули подключаемости.			
	В результате выполнения практической работы студенты рассмотрят концепцию «Connected Car» и			
	принцип работы двух основных каналов связи: DSRC и сотовый V2X.			

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	Изучение дополнительной литературы
2	Подготовка к практическим занятиям
3	Подготовка к промежуточной аттестации.
4	Подготовка к текущему контролю.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№	Ененного финаское описание	Мосто поступо
Π/Π	Библиографическое описание	Место доступа
1	Шапиро, Л. Компьютерное зрение: учебное	https://e.lanbook.com/book/417998
	пособие / Л. Шапиро, Д. Стокман; перевод с	(дата обращения: 10.04.2025)
	английского А. А. Богуславского под редакцией С.	
	М. Соколова. — 5-е изд. (эл.). — Москва :	
	Лаборатория знаний, 2024. — 763 с. — ISBN 978-	
	5-93208-725-1. — Текст : электронный	
2	Клетте, Р. Компьютерное зрение. Теория и	https://e.lanbook.com/book/131691
	алгоритмы: учебник / Р. Клетте; перевод с	(дата обращения: 10.04.2025)
	английского А. А. Слинкина. — Москва : ДМК	
	Пресс, 2019. — 506 с. — ISBN 978-5-97060-702-2.	
	— Текст : электронный	
3	Селянкин, В. В. Компьютерное зрение. Анализ и	https://e.lanbook.com/book/276455
	обработка изображений / В. В. Селянкин. — 3-е	(дата обращения: 10.04.2025)
	изд., стер. — Санкт-Петербург : Лань, 2023. — 152	
	с. — ISBN 978-5-507-45583-6. — Текст :	
	электронный	
4	Ли, П. Архитектура интернета вещей / П. Ли;	https://e.lanbook.com/book/345134
	перевод с английского М. А. Райтмана. — Москва	(дата обращения: 10.04.2025)
	: ДМК Пресс, 2020. — 454 с. — ISBN 978-5-97060-	
	784-8. — Текст : электронный	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Электронно-библиотечная система Научно-технической библиотеки РУТ(МИИТ) (http://library.miit.ru/)

Курсы Microsoft (https://www.microsoft.com/ru-ru/learning/windows-training.aspx)

Документация по CARLA Simulator (https://carla.readthedocs.io/en/latest/)

Видеокурс по работе с CARLA Simulator (https://www.youtube.com/playlist?list=PLQVvvaa0QuDeI12McNQdnTlWz9Xl Ca0uo)

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Прикладное программное обеспечение Microsoft Office Python 3.10 PyCharm CARLA Simulator

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Для лекционных занятий – наличие проектора и экрана.

Для практических занятий — наличие персональных компьютеров вычислительного класса, сервер с графическим ускорителем с ядрами CUDA.

9. Форма промежуточной аттестации:

Зачет в 3 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

заведующий кафедрой, доцент, к.н. кафедры «Цифровые технологии управления транспортными процессами»

Согласовано:

Заведующий кафедрой ЦТУТП В.Е. Нутович

Председатель учебно-методической

Н.А. Андриянова комиссии

В.Е. Нутович