МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы магистратуры по направлению подготовки 23.04.01 Технология транспортных процессов, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Интеллектуальные транспортные системы

Направление подготовки: 23.04.01 Технология транспортных процессов

Направленность (профиль): Транспортные системы агломераций

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ) ID подписи: 1174807

Подписал: руководитель образовательной программы Барышев Леонид Михайлович

Дата: 04.07.2025

1. Общие сведения о дисциплине (модуле).

Дисциплина «Интеллектуальные транспортные системы» посвящена изучению современных технологий, методов и архитектур интеллектуальных транспортных систем, направленных на повышение эффективности, безопасности и экологичности транспортных процессов. Курс охватывает ключевые компоненты ИТС: системы управления дорожным движением, телематические решения, технологии "умного транспорта", обработку больших данных и применение искусственного интеллекта в транспортной сфере. Особое внимание уделяется интеграции ИТС в городскую инфраструктуру и нормативно-правовым аспектам их внедрения.

Цель освоения дисциплины «Интеллектуальные транспортные системы»: формирование у обучающихся комплексного понимания принципов работы, проектирования и эксплуатации интеллектуальных транспортных систем, а также развитие навыков применения современных ИТ-решений для оптимизации транспортных потоков и повышения безопасности дорожного движения.

Задачи освоения дисциплины:

- 1. Изучить архитектуру, классификацию и функциональные модули ИТС (ATMS, ATIS, CVIS и др.).
- 2. Освоить принципы работы адаптивного светофорного регулирования, систем мониторинга трафика и автоматизированного управления транспортом.
- 3. Изучить технологии связи в ИТС (DSRC, 5G, V2X) и их роль в организации "умных" транспортных коридоров.
- 4. Анализировать применение больших данных (Big Data) и искусственного интеллекта (ИИ) для прогнозирования транспортных потоков.
- 5. Изучить стандарты и нормативно-правовую базу (в т.ч. ГОСТ Р 56350-2015, международные директивы ITS).
- 6. Разрабатывать алгоритмы обработки данных с датчиков, камер и IoTустройств для управления трафиком.
- 7. Оценивать эффективность внедрения ИТС на основе ключевых показателей (снижение заторов, ДТП, выбросов).
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ПК-1** Способен к выполнению отдельных работ при разработке проектов развития транспортной системы агломераций;
- **УК-1** Способен осуществлять критический анализ проблемных ситуаций на основе системного подхода, вырабатывать стратегию действий.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- акты технического регулирования в сфере ИТС;
- зарубежный отечественный ОПЫТ внедрения И интеллектуальных транспортных систем (ИТС), включая методы построения иерархически организованной совокупности морфологических описаний подсистем ИТС и взаимосвязей между ними, а также взаимосвязей программного обеспечения и оборудования, входящих в их состав ИТС) (физическая архитектура И иерархически организованной совокупности функциональных описаний подсистем, субъектов и объектов ИТС, а также их взаимодействий (функциональная архитектура ИТС);
- приоритетные сервисы и подсистемы ИТС, принципы интеграции информационных систем в рамках ИТС;
 - бортовые телематические системы, интегрированные в ИТС;
- сервисы для подключенного и высокоавтоматизированного транспорта.

Уметь:

- разрабатывать технические задания на проекты внедрения ИТС;
- разрабатывать принципиальную архитектуру ИТС городской агломерации;
- определять приоритетные сервисы и подсисмы ИТС городской агломерации;
- осуществлять управление распределением транспортных средств на дорогах и корректировать планы работы светофорных объектов для оптимизации движения транспортных средств с использованием ИТС, в том числе при возникновении чрезвычайных происшествий в целях перераспределения транспортных потоков.

Владеть:

- современным уровнем развития ИТС в регионах и городах Российской Федерации и за рубежом;
- -стандартами и актами технического регулирования в сфере ИТС и архитектурой ИТС;

- -современными интеллектуальными системами повышения безопасности дорожного движения, реализуемых ИТС в городах и на автомагистралях;
- методами динамической маршрутизации транспортных потоков, применения автоматизированных систем управления дорожным движением (АСУДД), предоставления приоритета общественному транспорту, включая архитектуру систем предоставления приоритета, управления «умными» остановками, управление парковочным пространством и др.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 3 з.е. (108 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Tun uwasu w aanggwii	Количество часов	
Тип учебных занятий		Семестр №3
Контактная работа при проведении учебных занятий (всего):	32	32
В том числе:		
Занятия лекционного типа	16	16
Занятия семинарского типа	16	16

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 76 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).

4.1. Занятия лекционного типа.

No				
п/п	Тематика лекционных занятий / краткое содержание			
1	Мировой опыт становления и развития ИТС.			
	Изучение современного уровня развития ИТС в России и за рубежом. Лучшие практики внедерения			
	и эксплуатации ИТС в городских транспортных системах.			
	Цели и задачи ИТС в городской агломерации. Пользователи ИТС.			
2	Нормативные правовые акты в сфере ИТС.			
	Акты технического регулирования в сфере ИТС. Стандарты устанавливающие требования к			
	физической и функциональной архитектурам интеллектуальных транспортных систем.			
3	Общесистемые решения ИТС. Севисы ИТС.			
	Приоритетные сервисы ИТС: информирование участников движения, управление дорожным			
	движеним, чрезвычайные ситуации (координация и управление), электронные платежи на			
	транспорте, мониторинг погодных условий (метеообстановка), управление данными ИТС,			
	управление транспортными потоками, мониторинг экологичейской обстановки, система взымания			
	платы, система контроля ПДД и установленных норм, система управления состоянием дорог,			
	весогабаритный контроль, выявление инцидентов, мониторинг единого парковочного пространства			
	и др.			
4	Архитектура ИТС.			
	Методы построения иерархически организованной совокупности морфологических описаний			
	подсистем ИТС и взаимосвязей между ними, а также взаимосвязей программного обеспечения и			
	оборудования, входящих в их состав (физическая архитектура ИТС) и иерархически			
	организованной совокупности функциональных описаний подсистем, субъектов и объектов ИТС, а			
	также их взаимодействий (функциональная архитектура ИТС). Верхнеуровневая архитектура ИТС.			
5	Подсистемы ИТС городской агломерации.			
	Подсистемы ИТС городской агломерации: видеонаблюдение и детектирования дорожно-			
	транспортных происшествий и чрезвычайных ситуаций, мониторинг экологических параметров,			
	метеомониторинг, организация стоянок транспортных средств; обеспечении контроля состояния			
	улиц и дорог; управление движеним транспортных потоков; системы электронной оплаты на			
	транспорте; весовой контроль ТС без их остановки и другие.			
6	Интеграция информационных систем в рамках ИТС.			
	Информирование пользователей системы.			
7	Технологии искусственного интеллекта в ИТС			
	Применение ИИ для обработки данных с датчиков и камер: распознавание образов, предсказание			
	заторов, адаптивное управление светофорами.			
	Машинное обучение для анализа транспортных потоков и прогнозирования аварийных ситуаций.			
	Кейсы внедрения AI в ИТС: умные светофоры (например, система SCOOT), автоматическое			
	детектирование ДТП.			
	Проблемы и перспективы: качество данных, необходимость обучения моделей на локальных транспортных особенностях.			
8	Безопасность и киберзащита ИТС			
0	1			
	Угрозы для ИТС: хакерские атаки, утечки данных, подмена информации (например, ложные сигналы о пробках).			
	Методы защиты: шифрование данных, аутентификация устройств, резервирование критических			
	систем.			
	светофорами.			
	Рекомендации по построению безопасной архитектуры ИТС.			
	Нормативные требования к кибербезопасности ИТС (ГОСТ, международные стандарты). Реальные инциденты и уроки: взлом дорожных датчиков, атаки на системы управления светофорами.			

4.2. Занятия семинарского типа.

Практические занятия

	практические занятия			
№ п/п	Тематика практических занятий/краткое содержание			
1	Архитектура ИТС городской агломерации.			
	В ходе практического занятия студенты получают знания по принципам построения архитектуре			
	ИТС городской агломерации и закрепляют лекционный материал. Функциональная архитектура			
	ИТС городской агломерации. Физическая архитектура ИТС городской агломерации.			
	Единая платформа управления транспортной системой.			
2				
	В ходе практического занятия студенты получают знания по АСУДД ЦКАД Москвоской области,			
	АСУДД Центральной автомагистрали г. Сочи дублер курортного проспекта, АСУДД Западного			
	скоростного диаметра в Санкт-Петербурге, АСУДД автодорожного тоннеля судопропускного			
	сооружения защитных сооружений Санкт-Петербурга, АСУДД Автомобильной дороги М-4 «Дон».			
	Проводится анализ национального опыта реализации проектов ИТС на автомагистралях.			
3	Подключенный и высокоавтоматизированный транспорт и его инфраструктура.			
	В ходе практического занятия студенты получают знания по рискам при формировании			
	интеллектуальной дорожной инфраструктуры для организации движения			
	высокоавтоматизированного транспортного средства. Передача информации между дорожно-			
	транспортной инфраструктурой и ВАТС.			
4	Зарубежные практики внедрения ИТС, подключенных и высоавтоматизированных			
	транспортных средств.			
	В ходе практического занятия студенты получают знания по зарубежному опыту внедрения ИТС,			
	подключенных и высокоавтоматизированных транспортных средств.			
5	Бортовые телематические системы, интегрированные в ИТС.			
	Мировой опыт создания интеллектуальных транспортных средств. Внутренние системы			
	интеллектуального транспортного средства. Внешние системы интеллектуального транспортного			
	средства. Мониторинг транспортной ситуации.			
6	Сервисы для подключенного и высокоавтоматизированного транспорта (ВАТС).			
	Передача информации между дорожно-транспортной инфраструктурой и ВАТС. Риски при			
	формировании интеллектуальной дорожной инфраструктуры для организации движения			
	высокоавтоматизированного транспортного средства.			
7	Интеллектуальные парковочные системы в структуре ИТС			
	Принципы организации: датчики занятости, динамическое ценообразование, интеграция с			
	мобильными приложениями.			
	Технологии: системы распознавания номеров (ANPR), сенсорные платформы, облачные системы			
	управления. Кейсы: опыт Москвы (Парковки Москвы), Сингапура (Electronic Road Pricing), Барселоны (SMART			
	Parking).			
	Проблемы: ложные срабатывания, вандализм, нагрузка на городской сервер.			
	Перспективы: автономные парковочные роботы, предиктивная аналитика загруженности.			
8	Мультимодальные транспортные платформы в ИТС			
	Концепция: объединение данных общественного транспорта, каршеринга, такси и			
	микромобильности (самокаты, велопрокат).			
	Техническая реализация: АРІ-интеграция, единые билетные системы, алгоритмы маршрутизации.			
	Примеры: приложение "Яндекс.Транспорт", Transport for London (TfL), Moovit.			
	Сложности: согласование данных между операторами, защита персональных данных			
	пользователей.			
	Развитие: персонализированные маршруты с ИИ, подписка на MaaS (Mobility as a Service).			

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы	
1	Изучение учебной литературы и интернет-источников.	
2	Подготовка к практическим занятиям.	
3	Подготовка к промежуточной аттестации.	
4	Подготовка к текущему контролю.	

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

No॒	Библиографическое	Маста устуга	
п/п	описание	Место доступа	
1	Душкин, Р. В.	https://archive.org/details/20230506_20230506_1007/page/1/mode/2up	
	Интеллектуальные		
	транспортные		
	системы:		
	монография / Р. В.		
	Душкин. — Москва		
	: ДМК Пресс, 2020.		
	— 280 c. — ISBN		
	978-5-97060-887-6		
2	Изюмский, А. А.	https://e.lanbook.com/book/478295	
	Интеллектуальные		
	транспортные		
	системы: учебное		
	пособие / А. А.		
	Изюмский, И. С.		
	Сенин, С. В.		
	Коцурба. —		
	Краснодар:		
	КубГТУ, 2024. —		
	235 c. — ISBN 978-		
	5-8333-1360-2		
3	Гладких, А. А.	https://e.lanbook.com/book/444389	
	Интеллектуальные		
	транспортные		
	системы: учебное		
	пособие / А. А.		
	Гладких, А. К.		
	Волков. —		
	Ульяновск: УИ ГА,		
	2022. — 101 c.		

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Официальный сайт РУТ (МИИТ) (https://www.miit.ru/).

Научно-техническая библиотека РУТ (МИИТ) (http:/library.miit.ru).

Образовательная платформа «Юрайт» (https://urait.ru/).

Общие информационные, справочные и поисковые системы «Консультант Плюс», «Гарант».

Электронно-библиотечная система издательства «Лань» (http://e.lanbook.com/).

Электронно-библиотечная система ibooks.ru (http://ibooks.ru/).

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Microsoft Internet Explorer (или другой браузер).

Операционная система Microsoft Windows.

Microsoft Office.

Система автоматизированного проектирования Autocad.

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебные аудитории для проведения учебных занятий, оснащенные компьютерной техникой и наборами демонстрационного оборудования.

9. Форма промежуточной аттестации:

Зачет в 3 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

ассистент Высшей инженерной

школы Е.Г. Комкова

Согласовано:

Директор Б.В. Игольников

Руководитель образовательной

программы Л.М. Барышев

Председатель учебно-методической

д.В. Паринов