МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 09.03.01 Информатика и вычислительная техника, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Информационные технологии в проектировании подземных сооружений

Направление подготовки: 09.03.01 Информатика и вычислительная

техника

Направленность (профиль): Системы автоматизированного

проектирования

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

D подписи: 2899

Подписал: И.о. заведующего кафедрой Нестеров Иван

Владимирович

Дата: 22.05.2024

1. Общие сведения о дисциплине (модуле).

Целями освоения дисциплины (модуля) являются:

- изучение студентами представления о расчетной схеме реального объекта;
 - изучение студентами алгоритмов моделирования работы сооружений. Задачами дисциплины (модуля) являются:
- овладение навыками составления алгоритмов и программ для расчета математических моделей инженерных сооружений;
- формирование навыков использования прикладных программных средств и информационных технологий, применяемых при решении основных профессиональных задач.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-1** Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности;
- **ПК-1** Способен участвовать в исследовательской деятельности в области совершенствования информационных систем.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- естественнонаучные и общеинженерные знания и методы математического анализа и моделирования;
- основы исследовательской деятельности в области совершенствования информационных систем;
- вычислительные алгоритмы позволяющие моделировать работу плоских стержневых систем

Уметь:

- использовать естественнонаучные и общеинженерные знания и методы математического анализа и моделирования;
- применять основы исследовательской деятельности в области совершенствования информационных систем;
- использовать вычислительные алгоритмы, позволяющие моделировать работу плоских стержневых систем

Владеть:

- естественнонаучными и общеинженерными знаниями и методами математического анализа и моделирования;
- основами исследовательской деятельности в области совершенствования информационных систем;
- вычислительными алгоритмами позволяющими моделировать работу плоских стержневых систем
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 2 з.е. (72 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Tura verse verse accompany	Количество часов	
Тип учебных занятий		Семестр №8
Контактная работа при проведении учебных занятий (всего):	40	40
В том числе:		
Занятия лекционного типа		20
Занятия семинарского типа	20	20

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 32 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).

4.1. Занятия лекционного типа.

No	
п/п	Тематика лекционных занятий / краткое содержание
1	Общие замечания о моделировании механических систем
	- Общие соотношения между классической и вычислительной строительной механикой.
	- Понятие системы и системного подхода применительно к стержневой системе.
	- Уравнения равновесия.
	- Поузловой подход для формирования матрицы уравнений равновесия.
	- Матрица уравнений равновесия для шарнирного элемента.
	- Алгоритм формирования матрицы уравнений равновесия для стержневой системы.
	- Построение линий влияния при использовании уравнений равновесия
2	Геометрические уравнения для элемента
	- Связь геометрических и статических уравнений (двойственность статического и геометрического
	пространств)
	- Построение полной системы уравнений строительной механики.
	- Учет заданных деформаций.
	- Алгоритм расчета: вычисление усилий и перемещений
3	Программная реализация расчета статически определимых шарнирных стержневых
	систем
	- Структура исходных данных и алгоритм программной реализации расчета статически
	определимых шарнирных стержневых систем.
	- Подходы к решению полной системы уравнений.
	- Получение формул, по которым вычисляются коэффициенты матрицы жесткости шарнирного
	элемента.
4	Алгоритм учета кинематических граничных условий
	- Разработка исходной информации и алгоритма программной реализации
	- Решение полной системы уравнений строительной механики по методу сил
	- Построение матрицы жесткости для стержня общего положения с жесткими узлами (шесть
	степеней свободы) с использованием полной системы уравнений.
	- Построение матрицы жесткости элемента с использованием табличных эпюр моментов из курса
	классической строительной механики.
5	Связь между перемещениями в местной и глобальной системах координат
	- Связь между перемещениями в местной и глобальной системах координат.
	- Системный подход к построению матрицы жесткости стержня общего положения: переход от
	матрицы жесткости в местной системе координат к матрице жесткости в глобальной системе
	координат.
	- Построение алгоритма программной реализации построения матрицы жесткости элемента общего
	положения.
	- Оценка трудоемкости алгоритма.
	- Построение матрицы жесткости для элемента с пятью степенями свободы в местной системе
	координат Алгоритм вычисления усилий по известным перемещениям.
6	Учет упругого основания.
	- Модель Винклера.
	- модель винклера Построение матрицы жесткости для элемента на упругом основании (приближенная модель).
	- построение матрицы жесткости для элемента на упругом основании (приолиженная модель). Тестовые примеры.
	- Учет упругого основания.
	- Моделирование работы рельса с использованием элемента приближенной модели на
	винклеровском основании.
<u> </u>	

№	Тематика лекционных занятий / краткое содержание		
п/п	тематика пекциониви завитии г краткое водержание		
7	Построение матрицы жесткости стержневых элементов по дифференциальному		
	уравнению		
	-Построение матрицы жесткости стержневых элементов по дифференциальному уравнению на		
	примере стержня работающего на растяжение – сжатие.		
	-Построение матрицы жесткости элемента на винклеровском основании (точная модель).		
	-Учет влияния продольной силы на поперечные перемещения (продольно-поперечный изгиб).		
	-Построение матрицы жесткости приближенной модели.		
	-Построение матрицы жесткости точной модели по дифференциальному уравнению.		
	-Алгоритм программной реализации.		
	-Алгоритм вычисления критического параметра нагрузки.		
8	Решение дифференциальных уравнений		
	-Линейное однородное уравнение 2-го порядка с постоянными коэффициентами.		
	-Линейное неоднородное уравнение 2-го порядка с постоянными коэффициентами.		
	-Применение преобразования Лапласа к решению обыкновенных дифференциальных уравнений с		
	начальными условиями.		
9	Вывод дифференциальных уравнений для балки, балки на упругом основании, при		
	гармонических колебаниях и при продольно-поперечном изгибе		
	-Простая балка. Балка на упругом основании.		
	-Балка при гармонических колебаниях. Балка в условиях продольно-поперечного изгиба.		
	-Растянуто-изогнутая балка, сжато-изогнутая балка.		
	-Равномерно распределенная нагрузка по всей длине балки, распределенная нагрузка на левой		
	половине балки, сосредоточенная сила, сосредоточенный момент, две сосредоточенные силы,		
	врезанный шарнир, балка на сплошном винклеровском упругом основании.		
10	Определение критических сил		
	-Алгоритм определения критических сил и его реализация.		
	-Алгоритм определения частот собственных колебаний и его реализация.		

4.2. Занятия семинарского типа.

Лабораторные работы

№	II			
Π/Π	Наименование лабораторных работ / краткое содержание			
1	Общие соотношения между классической и вычислительной строительной			
	механикой.			
	Общие соотношения между классической и вычислительной строительной механикой.			
	Понятие системы и системного подхода применительно к стержневой системе.			
	Уравнения равновесия.			
	Поузловой подход для формирования матрицы уравнений равновесия.			
2	Алгорим формирования матрицы уравнений равновесия для шарнирного элемента.			
	Матрица уравнений равновесия для шарнирного элемента.			
	Алгоритм формирования матрицы уравнений равновесия для стержневой системы.			
	Построение линий влияния при использовании уравнений равновесия			
3	Связь геометрических и статических уравнений.			
	Связь геометрических и статических уравнений: двойственность статического и геометрического			
	пространств. Примеры расчета			
4	Построение полной системы уравнений строительной механики.			
	Учет заданных деформаций.			
	Алгоритм расчета: вычисление усилий и перемещений			

№				
п/п	Наименование лабораторных работ / краткое содержание			
5	Программная реализация расчета статически определимых шарнирных стержневых			
	систем			
	Изучение структуры исходных данных и алгоритма программной реализации расчета статически			
	определимых шарнирных стержневых систем			
6	Смешанный метод			
	Смешанный метод: изучение структуры исходных данных и алгоритма реализации.			
7	Формулы для вычисления коэффициентов матрицы жесткости шарнирного			
	элемента.			
	Получение формул, по которым вычисляются коэффициенты матрицы жесткости шарнирного			
	элемента.			
	Алгоритм программной реализации.			
8	Вычисление коэффициентов матрицы жесткости шарнирного элемента.			
	Разработка исходной информации и алгоритма программной реализации			
9	Метод сил			
	Формулы для расчета и алгоритм метода			
10	Построение матрицы жесткости для стержня общего положения с жесткими			
	узлами.			
	Построение матрицы жесткости для стержня общего положения с жесткими узлами (шесть			
	степеней свободы) с использованием полной системы уравнений.			
	Построение матрицы жесткости элемента с использованием табличных эпюр моментов из курса			
	классической строительной механики.			

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы	
1	Изучение дополнительной литературы.	
2	Подготовка к лабораторным работам.	
3	Выполнение курсовой работы.	
4	Подготовка к промежуточной аттестации.	
5	Подготовка к текущему контролю.	

4.4. Примерный перечень тем курсовых работ

Все задания выполняются по индивидуальному варианту.

- 1. Алгоритм и программная реализация формирования матрицы уравнений равновесия.
 - 2. Построение линий влияния.
- 3. Разработка функций решения полной системы уравнений для статически определимой системы:
 - ввод исходных данных;
 - формирование матрицы уравнений равновесия;

- транспонирование матрицы уравнений равновесия;
- вычисление усилий (решение системы уравнений);
- вычисление деформаций;
- печать результатов.
- 4. Разработка функций решения полной системы уравнений для статически определимой системы:
 - ввод исходных данных;
 - формирование матрицы уравнений равновесия;
 - транспонирование матрицы уравнений равновесия;
 - вычисление усилий (решение системы уравнений);
 - вычисление деформаций;
 - вычисление перемещений узлов;
 - печать результатов.
 - 5. Решение тестовых и индивидуальных задач на силовое воздействие.
- 6. Решение тестовых и индивидуальных задач на температурное воздействие.
 - 7. Построение линий влияния статическим методом.
 - 8. Построение линий влияния кинематическим методом.
- 9. Разработка функций для решения полной системы уравнений по методу перемещений:
 - ввод исходных данных;
- формирование матрицы жесткости ансамбля элементов (включает в себя построение матрицы жесткости элемента);
 - учет кинематических граничных условий;
 - решение системы уравнений (вычисление перемещений);
- вычисление усилий (включает в себя функцию построения матрицы усилий);
 - вывод перемещений и усилий.
- 10. Разработка функции, реализующей решение полной системы уравнений по методу сил.
- 5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

No		
π/	Библиографичес	Место доступа
П	кое описание	iviceto doctyna
1	Шапошников, Н.	https://reader.lanbook.com/book/339038?lms=b74cea5b8e3cac27f8fe3370
	Н. Строительная	cac08712
	механика / Н. Н.	
	Шапошников, Р.	
	E.	
	Кристалинский,	
	А. В. Дарков;	
	под редакцией Н.	
	Н. Шапошников.	
	— 16-е изд., стер.	
	— Санкт-	
	Петербург :	
	Лань, 2023. —	
	692 c. — ISBN	
	978-5-507-47191-	
	1. — Текст :	
	электронный //	
	Лань:	
	электронно-	
	библиотечная	
	система	
2	Матвеев, С. А.	https://e.lanbook.com/book/407138
	Основы метода	
	конечных	
	элементов:	
	учебное пособие	
	/ С. А. Матвеев.	
	— 2-е изд., испр.	
	— Омск :	
	СибАДИ, 2023.	
	— 65 с. —	
	Текст:	
	электронный //	
	Лань :	
	электронно-	
	библиотечная	
	система	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Официальный сайт РУТ (МИИТ) (https://www.miit.ru/).

Научно-техническая библиотека РУТ (МИИТ) (http:/library.miit.ru).

Образовательная платформа «Юрайт» (https://urait.ru/).

Электронно-библиотечная система издательства «Лань» (http://e.lanbook.com/).

Электронно-библиотечная система ibooks.ru (http://ibooks.ru/).

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Microsoft Internet Explorer (или другой браузер).

Операционная система Microsoft Windows.

Microsoft Office.

Система автоматизированного проектирования Autocad.

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебные аудитории для проведения учебных занятий, оснащенные компьютерной техникой и наборами демонстрационного оборудования.

9. Форма промежуточной аттестации:

Зачет в 8 семестре.

Курсовая работа в 8 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, доцент, к.н. кафедры «Системы автоматизированного проектирования»

И.В. Нестеров

Согласовано:

и.о. заведующего кафедрой САП

И.В. Нестеров

Председатель учебно-методической

комиссии М.Ф. Гуськова