МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент

программы аспирантуры по научной специальности 2.3.2 Вычислительные системы и их элементы, утвержденной научным руководителем РУТ (МИИТ) Розенбергом И.Н.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

«Информационные технологии и телекоммуникации»

Кафедра: Кафедра «Вычислительные системы, сети

и информационная безопасность»

Уровень высшего образования: подготовка кадров высшей квалификации

Научная специальность: 2.3.2 Вычислительные системы и их

элементы

Форма обучения: Очная

Разработчики

И.Е. Сафонова

Согласовано

Заведующий кафедрой ВССиИБ Б.В. Желенков

Председатель учебно-методической

комиссии Н.А. Андриянова

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 4196

Подписал: заведующий кафедрой Желенков Борис

Владимирович

Дата: 28.10.2024

1. Цели освоения учебной дисциплины.

Целями освоения учебной дисциплины (модуля) "Информационные технологии и телекоммуникации" являются: - формирование профессиональных компетенций по основным разделам дисциплины;

- формирование у аспирантов целостных представлений о современных научных проблемах и задачах в области информационных технологии и телекоммуникаций;
- изучение подходов и методов решение проблем и задач в области информационных технологий и телекоммуникаций для обеспечения ускорения научно-технического прогресса;
- изучение современных принципов и средств создания и совершенствования информационных технологий и телекоммуникаций.

2. Место учебной дисциплины в структуре программы аспирантуры.

Дисциплина "Информационные технологии и телекоммуникации" относится к Образовательному компоненту «Дисциплины (модули)» программы аспирантуры по специальности 2.3.2 Вычислительные системы и их элементы.

3. Планируемые результаты обучения по дисциплине (модулю), соотнесенные с планируемыми результатами освоения программы аспирантуры.

В результате изучения дисциплины "Информационные технологии и телекоммуникации" аспирант должен:

Знать:

- современное состояние теоретической и технической базы средств вычислительной техники, телекоммуникаций, новейшие информационные технологии и перспективы их развития;
- методологические основы создания вычислительных систем, средств телекоммуникаций и принципы их функционирования;
- современные архитектуры вычислительных систем и телекоммуникационных сетей;
 - методы организации вычислительных процессов;
 - методику организации и проведения научного эксперимента.

Уметь:

- применять наиболее перспективные подходы к созданию новых информационных технологий и средств телекоммуникаций;
- разрабатывать математические модели вычислительных процессов, телекоммуникационных систем и объектов информатизации;

- применять современные научно-электронные библиотеки, поисковые платформы, объединяющие реферативные базы данных публикаций в научных журналах и патентов для решения научных задач;
 - применить полученные знания для решения научных задач.

Владеть:

- навыками сравнительного анализа научных исследований, проводимых в междисциплинарных областях;
- навыками подготовки научно-технических отчетов, обзоров, публикаций по результатам выполненных исследований;
- навыками планирования и проведения научных исследований в области информационных технологий и телекоммуникаций;
- навыками внедрения и эксплуатации компьютерных и автоматизированных систем для использования их в исследовательских целях, проведения экспериментов, построения и развития новых теорий организации вычислительных процессов и передачи информации.

4. Объем дисциплины (модуля).

4.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 7 зачетных единиц (252 академических часа(ов).

4.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации программы аспирантуры на иных условиях, при проведении учебных занятий:

		Количество	
Тип учебных занятий	часов		
	Всего	Сем.	
		№ 1	
Контактная работа при проведении учебных занятий (всего):	72	72	
В том числе:			
Занятия лекционного типа	36	36	
Занятия семинарского типа	36	36	

- 4.3. Объем дисциплины (модуля) в форме самостоятельной работы аспирантов, а также в форме контактной работы аспирантов с педагогическими работниками и (или) лицами, привлекаемыми к реализации программы аспирантуры на иных условиях, при проведении промежуточной аттестации составляет 180 академических часа (ов).
- 4.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме

контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.

5. Содержание дисциплины (модуля).

- 5.1. Занятия лекционного типа.
- 5.1.1. Лекции.

No				
п/п	Тематика лекционных занятий / краткое содержание			
1	ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ			
	- научные положения;			
	- научные положения; - научный результат и вклад в науку;			
	- научный результат и вклад в науку, - научная задача и научная проблема.			
2	СОВРЕМЕННЫЕ НАУЧНЫЕ ПРОБЛЕМЫ И ЗАДАЧИ В ОБЛАСТИ			
	ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ И ТЕЛЕКОММУНИКАЦИЙ			
	· · · · · · · · · · · · · · · · · · ·			
	- проблемы, классификация задач;			
	- направления научных исследований, подходы, методы исследования, стандарты;			
	- системы управления знаниями;- интеллектуальные системы.			
2				
3	ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ (ВС)			
	- технико-эксплуатационные характеристики ВС;			
	- единицы измерения производительности BC; - законы Амдала.			
4				
4	ОРГАНИЗАЦИЯ ВЫЧИСЛИТЕЛЬНЫХ СИСТЕМ			
	- свойства и особенности функционирования компьютерных систем, сетей, автоматизированных систем, вычислительных машин и комплексов;			
	- принципы эффективной организации информационного обмена.			
5	АРХИТЕКТУРЫ ВЫЧИСЛИТЕЛЬНЫХ СИСТЕМ			
3				
	- классификация архитектур вычислительных систем;			
6	- организация параллельных и распределенных вычислений.			
O	АССОЦИАТИВНЫЕ ВС - структура и обработка ассоциативной памяти;			
	- структура и обработка ассоциативной памяти, - типичные операции сравнения, выполняемыми АП.			
7				
/	КЛАСТЕРНЫЕ СТРУКТУРЫ			
	- классификация кластеров; - кластерная архитектура.			
8	GRID –СИСТЕМЫ			
0				
	- применение, типы;			
	- технологии; - вычислительная архитектура;			
	- модель открытой Грид-системы.			
9	ОБЛАЧНЫЕ ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ			
	- характеристики;			
	- модели развёртывания и модели обслуживания;			
	- основные элементы узла в облачной системе			
	- вычислительная инфраструктура облачной системы.			
10	ТУМАННЫЕ ВЫЧИСЛЕНИЯ			
	- модель туманных вычислений;			
	- типы систем обработки данных для туманных вычислений;			
	- эталонная архитектура туманных вычислений.			

No				
п/п	Тематика лекционных занятий / краткое содержание			
11	ПАРАЛЛЕЛЬНЫЕ ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ			
	- способы синхронизации параллельного взаимодействия;			
	- моделирование и анализ параллельных вычислений			
	- правила формирования параллельных алгоритмов			
	- показатели эффективности параллельного алгоритма			
	- этапы разработки параллельного алгоритма;			
	- программные инструменты параллелизма.			
12	- единцы измерения информации;			
	- квантовый компьютер;			
	- суть квантовой передачи данных;			
	- квантовая телепортация;			
	- квантовые сети.			
13	СРЕДСТВА ТЕЛЕКОММУНИКАЦИЙ			
	- стандарты и технологии;			
	- системы и каналы связи;			
	- классификация телекоммуникационных сетей;			
	- телекоммуникационное оборудование.			
14	БЕСПРОВОДНЫЕ ТЕХНОЛОГИИ			
	- подходы к классификации беспроводных технологий;			
	- беспроводные сети и мобильные системы;			
	- технологии беспроводных широкополосных сетей;			
1.5	- модели расчета распространения радиоволн.			
15	БЕСПРОВОДНЫЕ САМООРГАНИЗУЮЩИЕСЯ СЕТИ			
	- особенности и технологии;			
	- источники уязвимостей в беспроводных самоорганизующихся сетях;			
1.0	- методы повышения безопасности.			
16	БЕСПРОВОДНЫЕ СЕНСОРНЫЕ СЕТИ			
	- способы построения;			
	- топологии;			
	- архитектура сенсорного узла;			
	- протоколы; - характеристики качества обслуживания.			
17	НАДЕЖНОСТЬ ВЫЧИСЛИТЕЛЬНЫХ СИСТЕМ И			
17	ТЕЛЕКОММУНИКАЦИОННЫХ СЕТЕЙ			
	,			
	- классификация систем по уровню надежности; - методы оценки надежности;			
	- методы оценки надежности;			
	- расчет надежности при проектировании сетей			
	- оценка надежности программного обеспечения.			
18	ПРОБЛЕМА УЛУЧШЕНИЯ ТЕХНИКО-ЭКСПЛУАТАЦИОННЫХ			
10	ХАРАКТЕРИСТИК ТЕЛЕКОММУНИКАЦИОННЫХ СИСТЕМ И СРЕДСТВ			
	ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ			
	- показатели эффективности функционирования телекоммуникационных систем и средств ВТ;			
	- подходы к оценке общих ресурсов.			

5.2. Занятия семинарского типа.

5.2.1. Практические занятия.

No			
п/п	Тематика практических занятий/краткое содержание		
1	АНАЛИЗ ТЕМЫ ИССЛЕДОВАНИЯ		
	Результат рабаты – аспирантом будут выбраны задачи исследования по паспорту специальности;		
	сформулирована цель (предварительно); определены объект, предмет и методы исследования.		
2	АНАЛИЗ НАУЧНЫХ ЗАДАЧ В ОБЛАСТИ ИНФОРМАЦИОННЫХ		
	ТЕХНОЛОГИЙ И ТЕЛЕКОММУНИКАЦИЙ		
	Результат работы – отчет с описанием актуальных научных задач, имеющих отношение к теме		
	диссертационного исследования.		
3	АРХИТЕКТУРЫ ВС		
	Результат работы – отчет в виде реферата с исследоваинем заданной архитектуры ВС.		
4	ОРГАНИЗАЦИЯ ЦЕНТРАЛЬНОГО ПРОЦЕССОРНОГО ЭЛЕМЕНТА		
	В результате выполнения работы аспирант получит знания принципов организации и		
	функционирования аппаратных и программно-аппаратных средств ВС.		
5	КЛАСТЕРНАЯ АРХИТЕКТУРА		
	Результат работы – отчет с результами исследования управляющего или вычислительного узлов		
6	кластера.		
6	МОДЕЛЬ ОТКРЫТОЙ ГРИД-СИСТЕМЫ		
7	Результат работы – отчет с описанием сервисов. ОБЛАЧНЫЕ ВС		
/	Результат работы – отчет с описанием узла облачной системы.		
8	ТУМАННЫЕ ВЫЧИСЛЕНИЯ		
0	Результат работы – отчет с анализом типов систем обработки данных для туманных вычислений.		
9	ИССЛЕДОВАНИЕ ПАРАЛЛЕЛЬНЫХ ВЫЧИСЛЕНИЙ		
9	В результате работы аспирантом будет проведена оценка эффективности распараллеливания		
	алгоритмов и эффективности параллельного способа решения конкретных задач.		
10	АНАЛИЗ И ИССЛЕДОВАНИЕ БЕСПРОВОДНЫХ СЕТЕЙ И		
10	ТЕЛЕКОММУНИКАЦИОННЫХ СИСТЕМ. КАНАЛЫ СВЯЗИ		
	Результат работы – отчет с проведенным сравнительным анализом беспроводных каналов связи.		
11	АНАЛИЗ И ИССЛЕДОВАНИЕ БЕСПРОВОДНЫХ СЕТЕЙ И		
11	ТЕЛЕКОММУНИКАЦИОННЫХ СИСТЕМ. МОДУЛЯЦИЯ СИГНАЛОВ		
	Результат работы – графически изображенная последовательность информации при помощи		
	амплитудной, частотной и фазовой модуляции.		
12	АНАЛИЗ МОДЕЛЕЙ ПРОСТРАНСТВЕННОЙ ОРГАНИЗАЦИИ		
	БЕСПРОВОДНЫХ СЕТЕЙ		
	Результат работы – таблицы с результатами исследования моделей проектирования зоны покрытия:		
	модель Окамура, модель Хата, модель COST 231 Уолфиша-Икегами и др.		
13	ПРИНЦИПЫ ЧАСТОТНО-ТЕРРИТОРИАЛЬНОГО ПЛАНИРОВАНИЯ СЕТЕЙ		
	ПОДВИЖНОЙ СВЯЗИ		
	В работе аспирантом будет проведны расчеты и оценка зоны обслуживания абонентов в системе		
	таранкинговой связи.		
14	ХАРАКТЕРИСТИКИ КАЧЕСТВА ОБСЛУЖИВАНИЯ В БЕСПРОВОДНЫХ		
	СЕНСОРНЫХ СЕТЯХ		
	Результат работы – отчет с проведенным описанием и анализом критериев, относящиеся к передаче		
	данных в БСС, по которым можно оценивать качество обслуживания.		
15	ВЕРОЯТНОСТЬ РАБОТОСПОСОБНОГО СОСТОЯНИЯ ТРАКТА ПЕРЕДАЧИ		
	ДАННЫХ СЕТИ		
	Результат работы – расчет вероятности работоспособного состояния тракта передачи данных		
	телекоммуникационной сети с использованием элементов математической логики.		

№ π/π	Тематика практических занятий/краткое содержание		
16	ОПТИМАЛЬНОЕ РАСПРЕДЕЛЕНИЕ РЕЗЕРВОВ ВС МЕТОДОМ		
	НЕОПРЕДЕЛЕННЫХ МНОЖИТЕЛЕЙ ЛАГРАНЖА		
	Результат работы – описание разработанной системы (оптимальный вектор состава ВС), которая		
	обладает вероятностью безотказной работы Р?0,99 при минимальной стоимости.		
17	НАДЕЖНОСТЬ ВОССТАНАВЛИВАЕМЫХ СИСТЕМ		
	Аспирант проводит расчеты коэффициента готовности и оценку вероятности безотказной работы		
	восстанавливаемых ВС.		
18	ОЦЕНКА ТЕХНИЧЕСКО-ЭКСПЛУАТАЦИОННЫХ ХАРАКТЕРИСТИК		
	ТЕЛЕКОММУНИКАЦИОННЫХ СЕТЕЙ (ТС) И СРЕДСТВ ВЫЧИСЛИТЕЛЬНОЙ		
	ТЕХНИКИ (СВТ)		
	В результате будет выполнен расчет основных заданных техническо-эксплуатационных показателей		
	ТС (или СВТ) и определены способы их улучшения.		

5.3. Самостоятельная работа аспирантов.

№ п/п	Вид самостоятельной работы	
1	Изучение дополнительной литературы.	
2	Работа с лекционным материалом.	
3	Подготовка к практическим занятиям.	
1	Подготовка к промежуточной аттестации.	

6. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

0020	спин дисциплины (модули).	
№ п/п	Библиографическое описание	Место доступа
1	Замятина О.М. Вычислительные системы, сети и телекоммуникации. Моделирование сетей: учебное пособие для вузов / О.М.Замятина. — Москва: Издательство Юрайт, 2022. — 159 с. — (Высшее образование).— ISBN 978-5-534-00335-2.	Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/490257 (дата обращения: 11.05.2024) Текст: электронный.
2	Сущенко С.П. Математические модели компьютерных сетей. — Томск: ТГУ, 2017. — 271 с.	http://www.inf.tsu.ru/library /Publications/2017/2017- 68.PDF,(дата обращения: 11.05.2024)
3	Кутузов О.И., Татарникова Т.М. Моделирование систем и сетей телекоммуникаций. Учебное пособие. – СПб, изд. РГГМУ, 2012. – 136 с. ISBN 978-5-86813-325-1	http://elib.rshu.ru/files_books/pdf/rid _8f90279a81844dbda0c8bf2ac 6455655.pdf (дата обращения: 11.05.2024) Текст: электронный.
4	Никулин Е.А. Компьютерная графика. Модели и алгоритмы: учеб. пособие для студ. напр. "Информатика и вычислительная техника" / Е. А. Никулин СПб.: Лань, 2017 708 с.: ил. — ("Учебники для вузов. Специальная	Библиотека РУТ http://library.miit.ru/catalog/ (дата обращения: 01.05.2024) Текст: непосредственный.

литература"). - Библиогр.: 706 с. -ISBN 978-5-8114-2505-1

7. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Форум специалистов по информационным технологиям http://citforum.ru/

Интернет-университет информационных технологий http://www.intuit.ru/

Образовательная платформа «Юрайт» (https://urait.ru/).

Общие информационные, справочные и поисковые системы «Консультант Плюс», «Гарант».

Электронно-библиотечная система издательства «Лань» (http://e.lanbook.com/).

Поисковая платформа, объединяющая реферативные базы данных публикаций в научных журналах и патентов Web of Science (WoS);

База данных рефератов и цитирования Scopus;

Информационный портал Научная электронная библиотека eLIBRARY.RU (www.elibrary.ru);

Научно-техническая библиотека РУТ (МИИТ) (http://library.miit.ru).

8. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Система моделирования ANYLOGIC; автоматизированная система обеспечения надёжности и качества аппаратуры ACOHИКА; пакет прикладных программ для решения задач технических вычислений MATLAB («MatrixLaboratory»); программа Putty; Операционная система Astra Linux; программа «Анти-Плагиат».

9. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Специализированная лекционная аудитория на 70 мест с мультимедиа аппаратурой и интерактивной доской.

Рабочее место преподавателя с персональным компьютером, подключённым к сетям INTERNET.

Компьютерный класс с кондиционером. Рабочие места аспирантов в компьютерном классе, подключённые к сетям INTERNET.

Учебные лаборатории: «Схемотехника ЭВМ и Информационная безопасность»; «Организация вычислительных систем и периферийные устройства»; «Сетевые технологии», оснащенная сетевым оборудованием и

программно-аппаратными средствами защиты информации; «Операционные системы и технологии программирования».

- 10. Форма промежуточной аттестации: Экзамен в 1 семестре.
- 11. Оценочные материалы.

Оценочные материалы формируются на основе принципов оценивания: валидности, определенности, однозначности, надежности.

Оценочные материалы включают в себя контрольные вопросы и типовые задания для практических занятий, контрольных работ, зачетов, экзаменов, тесты, примерную тематику рефератов, а также иные формы контроля, позволяющие оценить знания, умения и уровень приобретенных компетенций.