МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы магистратуры по направлению подготовки 15.04.06 Мехатроника и робототехника, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Исследования и испытания роботов и робототехнических систем

Направление подготовки: 15.04.06 Мехатроника и робототехника

Направленность (профиль): Роботы и робототехнические системы

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ) ID подписи: 6216

Подписал: заведующий кафедрой Неклюдов Алексей

Николаевич

Дата: 01.06.2024

1. Общие сведения о дисциплине (модуле).

Целями освоения учебной дисциплины (модуля) являются:

- формирование целостного и системного представления о создании новых перспективных мехатронных модулей и систем управления сложными динамическими объектами и роботизированным производством;
- развитие способности применять современные информационные технологии и программные средства при моделировании технологических процессов;
- развитие способности к разработке методики проведения экспериментов и проведению экспериментов на действующих макетах и образцах мехатронных и робототехнических систем и подсистем;
- развитие способности использовать современные информационные технологии и программные средства при моделировании технологических процессов;
- приобретения навыков составления аналитических обзоров и научнотехнических отчетов по результатам выполненной работы при подготовке публикаций по результатам исследований и разработок.

Задачами дисциплины (модуля) являются:

- научить обрабатывать результаты с применением современных информационных технологий и технических средств;
- развить способность внедрять на практике результаты исследований и разработок, выполненных индивидуально и в составе группы исполнителей, обеспечивая защиту прав на объекты интеллектуальной собственности;
- сформировать способности использовать основные положения, законы и методы естественных наук при формировании моделей и методов исследования роботов и робототехнических систем;
- сформировать целлостное представление о выполнии теоретических и экспериментальных исследований мехатронных и робототехнических систем с использованием современных электронно-измерительных устройств.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ОПК-1 - Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования в профессиональной деятельности;

- **ОПК-4** Способен использовать современные информационные технологии и программные средства при моделировании технологических процессов;
- **ОПК-13** Способен использовать основные положения, законы и методы естественных наук и математики при формировании моделей и методов исследования мехатронных и робототехнических систем;
- **ПК-5** Способен разрабатывать методики проведения экспериментов и проводить эксперименты на действующих макетах и образцах мехатронных и робототехнических систем и их подсистем, обрабатывать результаты с применением современных информационных технологий и технических средств;
- **ПК-6** Готов к составлению аналитических обзоров и научнотехнических отчетов по результатам выполненной работы, в подготовке публикаций по результатам исследований и разработок;
- **ПК-7** Способен внедрять на практике результаты исследований и разработок, выполненных индивидуально и в составе группы исполнителей, обеспечивать защиту прав на объекты интеллектуальной собственности;
- **ПК-8** Способен выполнять теоретические и экспериментальные исследования мехатронных и робототехнических систем с использованием современных информационно-измерительных устройств.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- знать классификацию и методики испытаний робототехнических комплексов различных типов и назначения;
- знать нормативно-техническую документацию и стандарты, регламентирующие процессы исследований и испытаний;
- знать методы и средства измерений параметров робототехнических систем в различных условиях эксплуатации;
- знать методики обработки и статистического анализа результатов экспериментальных исследований;
- знать типовые неисправности и дефекты робототехнических систем, выявляемые в процессе испытаний;
- знать правила эксплуатации испытательного оборудования и стендового оборудования;
- знать технику безопасности при проведении исследований и испытаний робототехнических комплексов.

Уметь:

- уметь анализировать соответствие характеристик робототехнических комплексов техническому заданию; уметь разрабатывать программы и методики испытаний робототехнических комплексов;
- уметь проводить экспериментальные исследования характеристик и параметров робототехнических систем;
- уметь использовать контрольно-измерительную аппаратуру и специализированное программное обеспечение для испытаний;
- уметь обрабатывать результаты измерений и проводить статистический анализ экспериментальных данных;
- уметь выявлять неисправности и дефекты робототехнических систем по результатам испытаний;
- уметь оформлять протоколы испытаний и технические отчеты по результатам исследований;
- уметь анализировать соответствие характеристик робототехнических комплексов техническому заданию.

Владеть:

- владеть методами планирования и организации испытаний робототехнических комплексов;
- владеть навыками работы с контрольно-измерительной аппаратурой и испытательным оборудованием;
- владеть методами статистической обработки результатов экспериментальных исследований;
- владеть методиками оценки точности и надежности робототехнических систем;
- владеть навыками идентификации типовых неисправностей и дефектов робототехнических систем;
- владеть техникой безопасности при работе с робототехническими комплексами и испытательным оборудованием;
- владеть методами оформления технической документации по результатам испытаний.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 3 з.е. (108 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
	Всего	Семестр №3
Контактная работа при проведении учебных занятий (всего):	48	48
В том числе:		
Занятия лекционного типа	32	32
Занятия семинарского типа	16	16

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 60 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

No	Томотичес научноми и роматий / местусов со наемения		
п/п	Тематика лекционных занятий / краткое содержание		
1	Основные понятия		
	Рассматриваемые вопросы:		
	- состав и характеристики мехатронных модулей и робототехнических систем;		
	- устройство мехатронных модулей движения.		
2	Эксплуатация робототехнических и мехатронных систем (введение)		
	Рассматриваемые вопросы:		
	- эксплуатация роботов в производственных системах;		
	- эксплуатация роботов в транспортно-накопительных системах автоматизированных производств.		
3	Эксплуатация робототехнических и мехатронных систем (параметры и		
	организация)		
	Рассматриваемые вопросы:		
	- основные контролируемые параметры при эксплуатации;		

No			
Π/Π	Тематика лекционных занятий / краткое содержание		
	- организация эксплуатации систем управления и приводов мехатронных и робототехнических устройств.		
4	Эксплуатация робототехнических и мехатронных систем (проведение ТО)		
	Рассматриваемые вопросы:		
	- техническое обслуживание мехатронных и робототехнических систем;		
	- план-график эксплуатационных мероприятий мехатронных и робототехнических систем.		
5	Методы и средства испытаний и диагностики роботов и мехатронных систем		
	Рассматриваемые вопросы:		
	- виды и общие требования к испытаниям промышленных и мобильных роботов;		
	- определение технических характеристик ПР при испытаниях.		
6	Выполнение экспериментальных исследований мехатронных и робототехнических		
	систем с использованием современных электронно-измерительных устройств		
	Рассматриваемые вопросы:		
	- информационная система и датчики мехатронных и робототехнических систем;		
	- механические характеристики исполнительных органов промышленных роботов;		
	- расчет регулировочных резисторов.		
7	Выполнение экспериментальных исследований мехатронных и робототехнических		
	систем с использованием современных электронно-измерительных устройств		
	Рассматриваемые вопросы:		
	- системы управления и приводы мехатронных и робототехнических устройств;		
	- структура и состав роботизированных технологических комплексов.		
8	Методы и средства испытаний и диагностики роботов и мехатронных систем		
	Рассматриваемые вопросы:		
	- виды и общие требования к испытаниям промышленных и мобильных роботов;		
	- определение технических характеристик ПР при испытаниях.		
9	Общие требования к РТК и его компонентам		
	Рассматриваемые вопросы:		
	- применение робототизированных технологических комплексов в механообрабатывающем		
	производстве;		
	- требования к технологическим процессам, реализуемым в РТК.		
1.0	- испытания мехатронной системы.		
10	Общие требования к РТК и его компонентам		
	Рассматриваемые вопросы:		
	- требования к деталям, обрабатываемым в РТК;		
1.1	- требования к технологическому оборудованию, используемому в РТК.		
11	Общие требования к РТК и его компонентам		
	Рассматриваемые вопросы:		
	- формирование исходных требований;		
10	- особенности использования нескольких роботов в одном РТК.		
12	Регулируемый асинхронный электропривод		
	Рассматриваемые вопросы:		
	- требования к промышленным роботам, включаемым в состав РТК;		
	- требования к вспомогательному и транспортнонакопительному оборудованию, включаемому в РТК;		
	г тк, - требования к РТК в целом при механообработке.		
13	Планирование траекторий схвата манипулятора робота в составе РТК на основе		
13			
	сплайн-функций		
	Рассматриваемые вопросы:		

No	Тематика лекционных занятий / краткое содержание		
Π/Π	тематика лекционных занятии / краткое содержание		
	- общие требования к траекториям движения схвата манипуляторов в составе РТК;		
	- представление траектории движения схвата одним полиномом (первый подход).		
14	Планирование траекторий схвата манипулятора робота в составе РТК на основе		
	сплайн-функций		
	Рассматриваемые вопросы:		
	- обоснование необходимости использования сплайн-функций;		
	- представление траектории движения схвата сплайн-функциями (второй подход).		
15	Планирование траекторий схвата манипулятора робота в составе РТК сплайн-		
	функциями в пространстве обобщенных координат		
	Рассматриваемые вопросы:		
	- обоснование необходимости использования пространства обобщенных координат;		
	- общие случаи планирования траекторий сплайн-функциями в пространстве обобщенных		
	координат.		
16	Моделирование робототехнических систем в терминах сетей Петри		
	Рассматриваемые вопросы:		
	- основные понятия и терминология сетей Петри;		
	- имитационные модели робототехнических систем на основе сетей Петри.		
17	Моделирование робототехнических систем в терминах сетей Петри		
	Рассматриваемые вопросы:		
	- моделирование однопозиционного РТК сетями Петри;		
1.0	- моделирование многопозиционного РТК в терминах сетей Петри.		
18	Выбор методики проведения испытаний РТК		
	Рассматриваемые вопросы:		
	- основные положения, законы и методы естественных наук при формировании моделей и методов		
	исследования роботов и робототехнических систем;		
	- основы выбора методики испытаний РТК.		

4.2. Занятия семинарского типа.

Практические занятия

No		
	Тематика практических занятий/краткое содержание	
п/п		
1	Состав и характеристики мехатронных модулей и робототехнических систем	
	В результате выполнения практического задания рассматривается состав и характеристики	
	мехатронных модулей и робототехнических систем, их принципиальные отличия, достоинства и	
	недостатки.	
2	Эксплуатация робототехнических и мехатронных систем	
	В результате выполнения практического задания рассматриваются основные критерии	
	эксплуатации РТС и ее показатели.	
3	Эксплуатация робототехнических и мехатронных систем (критерии эксплуатации)	
	В результате выполнения практического задания рассматривается оценка основных критериев	
	эксплуатации РТС и ее показатели.	
4	Выполнение экспериментальных исследований мехатронных и робототехнических	
	систем с использованием современных электронно-измерительных устройств	
	В результате выполнения практического задания рассматриваются различные виды систем и	
	датчиков мехатронных и робототехнических систем для проведения исследований.	
5	Выполнение экспериментальных исследований мехатронных и робототехнических	
	систем с использованием современных электронно-измерительных устройств	

$N_{\underline{0}}$	Тематика практических занятий/краткое содержание		
Π/Π	тематика практических занятии/краткое содержание		
	(объект исследования)		
	В результате выполнения практического занятия рассматриваются системы управления и приводы		
	мехатронных и робототехнических устройств, а также структура и состав роботизированных		
	технологических комплексов.		
6	Моделирование робототехнических систем в терминах сетей Петри (основы)		
	В результате выполнения практического занятия рассматриваются имитационные модели		
	робототехнических систем на основе сетей Петри.		
7	Моделирование робототехнических систем в терминах сетей Петри (простые		
	модели)		
	В результате выполнения практического занятия рассматриваются моделирование		
	однопозиционного РТК сетями Петри.		
8	Моделирование робототехнических систем в терминах сетей Петри (сложные		
	модели)		
	В результате выполнения практического занятия рассматриваются моделирование		
	многопозиционного РТК сетями Петри.		

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	Изучение дополнительной литературы
2	Текущая подготовка к практическим занятиям
3	Подготовка к промежуточной аттестации.
4	Подготовка к текущему контролю.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Механизмы перспективных робототехнических систем: монография / под редакцией В. А. Глазунова, С. В. Хейло. – Москва: Техносфера, 2020. – 296 с. – ISBN 978-5-94836-604-3.	https://e.lanbook.com/book/181227 (дата обращения: 30.05.2024). – Текст: электронный.
2	Лукинов, А. П. Проектирование мехатронных и робототехнических устройств: учебное пособие для вузов / А. П. Лукинов. — 3-е изд., стер. — Санкт-Петербург: Лань, 2024. — 608 с. — ISBN 978-5-507-47616-9.	https://e.lanbook.com/book/396581 (дата обращения: 30.05.2024). – Текст: электронный.
3	Руднева, Л. Ю. Основы изобретательства и научных исследований: учебное пособие / Л. Ю. Руднева. – Москва: РТУ МИРЭА, 2023. – 193 с. – ISBN 978-5-7339-1850-1.	https://e.lanbook.com/book/382415 (дата обращения: 30.05.2024). – Текст: электронный.

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Официальный сайт РУТ (МИИТ) (https://www.miit.ru/).

Научно-техническая библиотека РУТ (МИИТ) (http:/library.miit.ru).

Образовательная платформа «Юрайт» (https://urait.ru/).

Общие информационные, справочные и поисковые системы «Консультант Плюс», «Гарант».

Электронно-библиотечная система издательства «Лань» (http://e.lanbook.com/).

Электронно-библиотечная система ibooks.ru (http://ibooks.ru/).

Электронная библиотека УМЦ по образованию на железнодорожном транспорте (https://umczdt.ru/books/).

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Microsoft Internet Explorer (или другой браузер).

Операционная система Microsoft Windows.

Microsoft Office.

MatLab.

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебные аудитории для проведения учебных занятий, оснащенные компьютерной техникой и наборами демонстрационного оборудования.

9. Форма промежуточной аттестации:

Зачет в 3 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

профессор, профессор, д.н. кафедры «Наземные транспортнотехнологические средства»

Л.А. Сладкова

Согласовано:

Заведующий кафедрой НТТС

А.Н. Неклюдов

Председатель учебно-методической

комиссии

С.В. Володин