МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 02.03.02 Фундаментальная информатика и информационные технологии, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Квантовая теория поля

Направление подготовки: 02.03.02 Фундаментальная информатика и

информационные технологии

Направленность (профиль): Квантовые вычислительные системы и сети

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 1178210

Подписал: заведующий кафедрой Быков Никита Валерьевич

Дата: 15.05.2025

1. Общие сведения о дисциплине (модуле).

Целями освоения дисциплины (модуля) «Квантовая теория поля» являются:

- формирование компетенций в области теории поля, стохастического анализа полей и анализа когерентных состояний.
 - формирование навыков анализа квантованных полей.

Задачами дисциплины (модуля) «Квантовая теория поля» являются:

- изучение основных закономерностей классической теории поля и стохастической оптики;
 - изучение теории квантованных полей;
 - изучение теории когерентных состояний поля;
- изучение основных методов анализа квантованных полей, механизмов вторичного квантования, диаграммной техники, интегралов по траекториям и теории фазовых переходов 2 рода.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-1** Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной деятельности;
- **ПК-1** Способность свободно владеть профессиональными знаниями для анализа и синтеза физической информации в области физики квантовых вычислений.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- основные отличия классической теории поля от с квантовой теории поля;
 - теорию лагранжева и гамильтонова формализма в теории поля;
- основные положения стохастической оптики, интерференции и теории когерентности;
- основные положения квантовой теории поля, теории лазеров, элементы фейнмановской диаграммной техники;
- основные понятия, закономерности и законы в области физики квантовых вычислений.

Уметь:

- определять вид лагранжиана и гамильтониана в различных моделях полей; анализировать явления когерентности в различных ситуациях;
 - пользоваться операторами рождения и уничтожения;
 - вычислять корреляционные функции;
- использовать профессиональные знания для анализа и синтеза физической информации в области физики квантовых вычислений.

Владеть:

- основными методами анализа квантованных полей;
- методами построения корреляционных функций;
- методами анализа когерентных состояний;
- диаграммной техникой;
- навыками применения методов анализа и синтеза физической информации для решения профессиональных задач.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 4 з.е. (144 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Two was few we conserved	Количество часов	
Тип учебных занятий		Семестр №3
Контактная работа при проведении учебных занятий (всего):	48	48
В том числе:		
Занятия лекционного типа	32	32
Занятия семинарского типа	16	16

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 96 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован

полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.

4. Содержание дисциплины (модуля).

4.1. Занятия лекционного типа.

$N_{\underline{0}}$	Тематика лекционных занятий / краткое содержание	
Π/Π		
1	Элементы классической теории поля	
	Рассматриваемые вопросы:	
	- лагранжев и гамильтонов формализм;	
	- каноническое квантование;	
	- законы сохранения и симметрии.	
2 Флуктуации классического поля		
	Рассматриваемые вопросы:	
	- флуктуация электромагнитного поля;	
	- феноменологическая теория фотоотсчетов;	
	- процесс Пуассона;	
	- усреднение распределения Пуассона по величине, попавшей в детектор энергии;	
	- формула Манделя.	
3	Стохастическая оптика	
	Рассматриваемые вопросы:	
	- корреляционная функция классического сигнала;	
	- спектральная плотность мощности;	
	- теорема Винера-Хинчина.	
4	Когерентность для классического поля	
	Рассматриваемые вопросы:	
	- опыт Юнга;	
	- функция взаимной когерентности;	
	- теорема ван Ситтера-Цернике.	
5	Интерференция для классического поля	
	Рассматриваемые вопросы:	
	- интерферометр Майкельскона, интерферомент Маха-Цендера;	
	- поперечная длина когерентности;	
	- схема Брауна-Твисса.	
6	Квантованное поле	
	Рассматриваемые вопросы:	
	- гармонические полевые моды, их конфигурации в разложении напряженности поля;	
	- переход к оператору напряженности поля;	
	- операторы рождения и уничтожения фотонов;	
	- гамильтониан свободного поля;	
	- каноническое квантование.	
7	Фононы	
	Рассматриваемые вопросы:	
	- тождественность частиц и симметризация волновой функции;	
1	- вторичное квантование;	

$N_{\underline{0}}$			
Π/Π	Тематика лекционных занятий / краткое содержание		
	- микроскопическая и макроскопическая модели;		
	- деформационный потенциал;		
	- электрон-фононное взаимодействие.		
8	Глауберовская теория атомного детектора		
	Рассматриваемые вопросы:		
	- пример детектора с двумя атомами;		
	- корреляционные функции квантованного поля;		
	- нормированная функция когерентности.		
9	Когерентные состояния квантованного поля		
	Рассматриваемые вопросы:		
	- свойства состояния, собственного для положительной частотной части оператора напряженности		
	поля;		
	- когерентное состояние как собственное для оператора уничтожения фотонов;		
	- коэффициенты разложения когерентных состояний по базису Фока.		
10	Анализ когеретных состояний		
	Рассматриваемые вопросы:		
	- полнота множества когерентных состояний;		
	- глауберовское представление матрицы плотности;		
- 1.1	- характеристические функции квантованного состояния моды.		
11	Нерелятивистский лазер		
	Рассматриваемые вопросы:		
	- инверсия заселенностей;		
	- двухуровневая модель;		
	- трехуровневая модель; - когерентность излучения.		
12	«Скоростная» модель лазера		
12	Рассматриваемые вопросы:		
	- порог генерации;		
	- уравнение Фоккера-Планка;		
	- случаи стационарных состояний выше и ниже порога генерации;		
	- приближенное решение для корреляционных функций амплитуды и интенсивности;		
	- сужение линии генерации и замедление флуктуаций интенсивности близи порога генерации.		
13	Модель Джейнса-Каммингса		
	Рассматриваемые вопросы:		
	- гамильтониан двухуровневого атома в дипольном резонансном приближении;		
	- энергии «одетых» состояний;		
	- осцилляции Раби.		
14	Диаграммная техника		
	Рассматриваемые вопросы:		
	- функция Грина;		
	- двухточечные корреляционные функции;		
	- фейнмановский пропагатор;		
	- теория возмущений.		
15	Интеграл по траекториям		
	Рассматриваемые вопросы:		
	- вычисление средних по основному состоянию;		
	- функциональный интеграл для квантовой теории поля;		
	- функция Грина свободного поля;		
	- теория возмущений.		

№ п/п	Тематика лекционных занятий / краткое содержание	
16	Флуктуационная теория фазовых переходов 2 рода	
	Рассматриваемые вопросы:	
	- фазовые переходы 2 рода;	
	- модель Изинга;	
	- теория Ландау.	

4.2. Занятия семинарского типа.

Практические занятия

$N_{\underline{0}}$	Тематика практических занятий/краткое содержание			
Π/Π				
1	Основы классической теории поля			
	В результате выполнения практического задания студент получает навыки составления			
	лагранжиана и гамильтониана для классических полей, осваивает основные методы анализа			
	флуктуаций классических полей.			
2	Когерентность в классических полеях			
	В результате выполнения практического задания студент получает умение решения задач			
	интерференции, определения длины когерентности, построение корреляционных функций			
	сигналов.			
3	Функционалы и вариации			
	В результате выполнения практического задания студент получает навык работы с функционалами,			
	решения задач вариационного исчисления.			
4	Квантованное поле и фононы			
	В результате выполнения практического задания студент получает навык работы с квантованными			
	полями, операторами рождения и уничтожения.			
5	Когеретность в квантовой теории поля			
В результате выполнения практического задания студент получает навык решения зада				
	определения основных свойств когерентных состояний в квантовой теории поля.			
6	Лазеры			
	В результате выполнения практического задания студент получает навык решения задач в рамках			
	нерелятивистской и «скоростной» моделей лазера.			
7	Диаграммная техника			
	В результате выполнения практического задания студент получает навык решения задач методом			
	фейнмановской диаграммной техники.			
8	Интегралы по траекториям			
	В результате выполнения практического задания студент получает навык вычисления средних п			
	состояниям, использование теории возмущений.			

4.3. Самостоятельная работа обучающихся.

№	Рид сомостоятон ной работу	
Π/Π	Вид самостоятельной работы	
1	Подготовка к практическим занятиям.	
2	Работа с лекционным материалом.	
3	Работа с литературой.	
4	Подготовка к промежуточной аттестации.	

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Основы квантовой информации: учеб.	https://library.miit.ru/bookscatalog/metod/DC-
	пособие для студ. спец. Системы	811.pdf
	обеспечения движения поездов / Л. М.	
	Журавлева, О. Е. Журавлев; МИИТ. Каф.	
	Автоматика, телемеханика и связь на ж	
	д. транспорте М.: РУТ (МИИТ), 2018.	
2	Сальников, А. Н. Физика. Основные	https://e.lanbook.com/book/193329
	принципы : учебник для вузов / А. Н.	
	Сальников. — Санкт-Петербург : Лань,	
	2022. — 408 c. — ISBN 978-5-8114-8300-	
	6.	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Электронно-библиотечная система Научно-технической библиотеки РУТ (МИИТ): http://library.miit.ru

Электронно-библиотечная система ЛАНЬ (https://e.lanbook.com/).

Образовательная платформа Юрайт (https://urait.ru/).

Информационный портал Научная электронная библиотека eLIBRARY.RU (www.elibrary.ru);

Единая коллекция цифровых образовательных ресурсов (http://window.edu.ru).

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Microsoft Windows

Microsoft Office

Интернет-браузер (Yandex и др.)

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебная аудитория для проведения учебных занятий (занятий лекционного типа, практических занятий):

- мультимедийное оборудование, компьютер преподавателя.

Аудитория подключена к сети.

9. Форма промежуточной аттестации:

Зачет в 3 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

заведующий кафедрой, доцент, д.н.

кафедры «Физика» Н.В. Быков

Согласовано:

Заведующий кафедрой ВССиИБ Б.В. Желенков

Заведующий кафедрой Физика Н.В. Быков

Председатель учебно-методической

комиссии Н.А. Андриянова