МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 01.03.02 Прикладная математика и информатика, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Компьютерная графика

Направление подготовки: 01.03.02 Прикладная математика и

информатика

Направленность (профиль): Математическое моделирование и системный

анализ

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 5665

Подписал: заведующий кафедрой Нутович Вероника

Евгеньевна

Дата: 08.04.2025

1. Общие сведения о дисциплине (модуле).

Целью освоения дисциплины (модуля) является:

- овладение теоретическими основами, алгоритмами и инструментами компьютерной графики в объеме, достаточном для решения практических задач визуализации расчетов и обработки изображений.

Задачами дисциплины (модуля) являются:

- овладение основами теории цвета и преобразований;
- овладение основным алгоритмами компьютерной графики;
- формирование навыков использования спецификации OpenGL;
- формирование навыков использования пакета растровой графики GIMP для обработки изображений;
- формирование навыков использования пакета векторной графики Inkscape для обработки изображений.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ПК-4 - Уметь ставить цели создания системы, разрабатывать концепцию системы и требования к ней, выполнять декомпозицию требований к системе.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- основы теории цвета;
- форматы графических файлов;
- плюсы и минусы растровой, векторной и фрактальной графики;
- основы теории преобразований на плоскости и в пространстве;
- алгоритмы отрисовки линий и закраски фигур;
- алгоритмы удаления невидимых линий;
- алгоритмы отсечения;
- алгоритмы моделирования освещения;
- основы спецификации OpenGL
- язык описания сцен SVG;
- основы работы с растровым графическим редактором GIMP;
- основы работы с векторным графическим редактором Inkscape.

Уметь:

- использовать возможности спецификации OpenGL;

- применять адекватные форматы графических файлов;
- применять алгоритмы компьютерной графики при решении практических задач;
- использовать основные инструменты и палитры растрового графического редактора GIMP;
- использовать основные инструменты и палитры векторного графического редактора Inkscape.

Владеть:

- методами обработки изображений с использованием растрового графического редактора GIMP;
- методами обработки изображений с использованием растрового графического редактора Inkscape.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 3 з.е. (108 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Turn vinobin vy povigaviji	Количество часов	
Тип учебных занятий		Семестр №5
Контактная работа при проведении учебных занятий (всего):	48	48
В том числе:		
Занятия лекционного типа	16	16
Занятия семинарского типа	32	32

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 60 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или)

лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.

4. Содержание дисциплины (модуля).

4.1. Занятия лекционного типа.

No॒	Тематика лекционных занятий / краткое содержание	
п/п		
1	Введение в компьютерную графику	
	Рассматриваемые вопросы:	
	- основные понятия;	
	- история развития;	
	- виды графики;	
	- сферы применения.	
2	Цветовые модели	
	Рассматриваемые вопросы:	
	- цвет света и цвет предмета;	
	- цветовое зрение человека;	
	- аддитивная цветовая модель (RGB);	
	- модель RGB MKO;	
	- субтрактивные (СМҮ, СМҮК) цветовые модели; - модель HSL.	
3		
3	Растровая графика	
	Рассматриваемые вопросы: - описание;	
	- преимущества и ограничения;	
	- сжатие изображений;	
	- форматы файлов.	
4	Векторная графика	
	Рассматриваемые вопросы:	
	- описание;	
	- преимущества и ограничения;	
	- форматы файлов.	
5	Преобразования в компьютерной графике	
	Рассматриваемые вопросы:	
	- афинные преобразования и однородные координаты;	
	- матрицы афинных преобразований на плоскости;	
	- матрицы афинных преобразований в трехмерном пространстве;	
	- проекции.	
6	Некоторые алгоритмы компьютерной графики	
	Рассматриваемые вопросы:	
	- алгоритмы отрисовки линий;	
	- алгоритмы закраски фигур;	
	- алгоритмы удаления невидимых линий;	
	- алгоритмы отсечения;	
	- модели освещения и тени; - текстуры.	
	г текстуры.	

№ п/п	Тематика лекционных занятий / краткое содержание
7	Некоторые спецификации компьютерной графики
	Рассматриваемые вопросы:
	- спецификация OpenGL;
	- спецификация языка описания сцен SVG.
8	Графические редакторы
	Рассматриваемые вопросы:
	- растровый графический редактор GIMP основные инструменты;
	- векторный графический редактор Inkscape.

4.2. Занятия семинарского типа.

Лабораторные работы

No॒	Наименование лабораторных работ / краткое содержание		
п/п			
1	Методы аналитической геометрии. Построение проекции и преобразований		
	трёхмерного тела.		
	В результате выполнения лабораторной работы студент получает навык использования некоторых		
	методов аналитической геометрии при расчёте и преобразованиях сцен.		
2	OpenGL. Отображение 2D-фигуры.		
	В результате выполнения лабораторной работы студент получает навык работы с базовыми		
	средствами OpenGL для отображения 2D-графики.		
3	OpenGL. Отображение 3D-тела.		
	В результате выполнения лабораторной работы студент получает навык работы с базовыми		
	средствами OpenGL для отображения 3D-графики.		
4	OpenGL. Освещение.		
	В результате выполнения лабораторной работы студент получает навык работы с освещением в		
	OpenGL.		
5	OpenGL. Текстуры.		
	В результате выполнения лабораторной работы студент получает навык работы с текстурами в		
	OpenGL.		
6	Язык разметки масштабируемой векторной графики SVG.Создание сцены		
	средствами SVG.		
	В результате выполнения лабораторной работы студент получает навык работы со средствами		
	SVGт для создания анимированных сцен.		
7	Графический редактор GIMP. Модификация фотографии.		
	В результате выполнения лабораторной работы студент получает работы с базовыми средствами		
	GIMP: слоями, выделением, преобразованиями.		
8	Графический редактор Inkscape. Создание 3D-изображения.		
	В результате выполнения лабораторной работы студент получает базовые навыми работы с		
	инструментами Inkscape.		

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы	
1	Работа с литературой.	
2	работа с лекционным материалом.	

№ п/п	Вид самостоятельной работы	
3	Текущая подготовка к занятиям.	
4	Подготовка к промежуточной аттестации.	
5	Подготовка к текущему контролю.	

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ π/π	Библиографическое описание	Место доступа
1	Боресков, А. В. Основы компьютерной графики: учебник и практикум для вузов / А. В. Боресков, Е. В. Шикин. — Москва: Издательство Юрайт, 2025. — 219 с. — (Высшее образование). — ISBN 978-5-534-13196-3.	URL: https://urait.ru/bcode/560176 (дата обращения: 24.10.2025).
2	Вечтомов, Е. М. Компьютерная геометрия: геометрические основы компьютерной графики: учебник для среднего профессионального образования / Е. М. Вечтомов, Е. Н. Лубягина. — 2-е изд. — Москва: Издательство Юрайт, 2025. — 157 с. — (Профессиональное образование). — ISBN 978-5-534-13415-5.	URL: https://urait.ru/bcode/565359 (дата обращения: 24.10.2025).
3	Никулин, Е. А. Компьютерная графика. Модели и алгоритмы: учебное пособие / Е. А. Никулин. — 2-е изд., стер. — Санкт-Петербург: Лань, 2022. — 708 с. — ISBN 978-5-8114-2505-1. Никулин, Е. А. Учебное пособие Лань	https://e.lanbook.com/book/213038 (дата обращения: 24.10.2025).

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Официальный сайт РУТ (МИИТ) (https://www.miit.ru/).

Научно-техническая библиотека РУТ (МИИТ) (http:/library.miit.ru).

Образовательная платформа «Юрайт» (https://urait.ru/).

Электронно-библиотечная система издательства «Лань» (https://e.lanbook.com/).

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Операционная система Microsoft Windows.

Офисный пакет приложений Microsoft Office, в том числе PowerPoint.

Visual Studio Community Edition.

Редактор растровой графики GIMP.

Редактор векторной графики Inkscape.

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Для проведения занятий лекционного типа требуются аудитории, оснащенные компьютерной техникой и наборами демонстрационного оборудования.

Для лабораторных занятий – наличие персональных компьютеров.

9. Форма промежуточной аттестации:

Зачет в 5 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

А.Н. Соломатин

Согласовано:

Заведующий кафедрой ЦТУТП

В.Е. Нутович

Председатель учебно-методической

комиссии Н.А. Андриянова