МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы магистратуры по направлению подготовки 09.04.01 Информатика и вычислительная техника, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Компьютерное зрение

Направление подготовки: 09.04.01 Информатика и вычислительная

техника

Направленность (профиль): Искусственный интеллект и предиктивная

аналитика в транспортных системах

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 5665

Подписал: заведующий кафедрой Нутович Вероника

Евгеньевна

Дата: 01.09.2025

1. Общие сведения о дисциплине (модуле).

Цель дисциплины «Компьютерное зрение» заключается в освоении принципов обработки цифровых изображений для решения задач классификации, обнаружения объектов и событий, оценки возраста и эмоций, распознавания и идентификации лиц, оценки позы и прочих специализированных задач, применяемых в промышленности.

Задачи дисциплины:

- формирование у обучающихся знаний о принципах построения и применения архитектурах сверточных нейронных сетей, алгоритмах и моделях их обучения, а также особенностях подготовки данных для различных задач компьютерного зрения: классификации, сегментации и распозновании объектов на видео;
- формирование у обучающихся навыков подготовки данных для распознавания, создания или использования готовой нейронной сети, обучения или дообучения нейронной сети на заданных наборах данных.

2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-4** Способен применять на практике новые научные принципы и методы исследований;
- **ОПК-5** Способен разрабатывать и модернизировать программное и аппаратное обеспечение информационных и автоматизированных систем;
- **ПК-2** Способен осуществить сбор, очистку, подготовку и разметку данных используя методологию ETL для дальнейшего обучения моделей искусственного интеллекта;
- **ПК-3** Способен спроектировать, разработать, обучить, оценить и развернуть модели искусственного интеллекта в соответствии с методологией MLOps.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Уметь:

- осуществлять выбор нужной архитектуры нейронной сети;
- применять методы фильтрации, подбора признаков и подавления шумов при предварительной обработке данных;
 - осуществлять механизмы поиска или создания подходящего датасета;

- производить тестирование и отладку систем искусственного интеллекта.

Знать:

- принципы построения архитектуры нейронных сетей;
- особенности и принципы сверточных нейронных сетей;
- алгоритмы и методы обучения нейронных сетей;
- методы сбора, очистки, подготовки и разметки данных для обучения;
- возможности современных библиотек для работы с изображениями и принципы их использования для решения задач компьютерного зрения.

Владеть:

- навыком сбора, очистки, подготовки и разметки данных для обучения или дообучения нейронных сетей;
 - навыком нормализации и аугментации данных для обучения;
 - навыком обучения, развертывания систем искусственного интеллекта;
- навыком использования современных когнитивных сервисов и подбора их на основании целевой задачи компьютерного зрения.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 4 з.е. (144 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
	Всего	Семестр №2
Контактная работа при проведении учебных занятий (всего):	32	32
В том числе:		
Занятия лекционного типа	16	16
Занятия семинарского типа	16	16

3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 112 академических часа (ов).

3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.

4. Содержание дисциплины (модуля).

4.1. Занятия лекционного типа.

№ п/п	Тематика лекционных занятий / краткое содержание	
1	Основные задачи компьютерного и когнитивного зрения. Рассматриваемые вопросы: - получение, обработка и загрузка изображений; - предварительная обработка изображений: афинные преобразования; - задачи компьютерного зрения: классификация изображений, обнаружение объекта, события, оценка возраста и эмоций, распознавание и идентификация лиц, оценка позы и пр.; - обзор библиотек для работы с изображениями; - обзор возможностей библиотеки OpenCV; - примеры использования компьютерного зрения; - когнитивные сервисы, возможности сервисов; - примеры когнитивных сервисов: российские сервисы, мировые лидеры и специализированные сервисы.	
2	Свёрточные нейронные сети Рассматриваемые вопросы: - проблемы нейросетевого зрения; - особенности и принципы свёрточных нейронных сетей (CNN); - архитектура CNN: пирамидальная архитектура, VGG-16, ResNet, Google Inception и мобильные сети (MobileNet для портативных устройств).	
3	Алгоритмы и модели обучения CNN Рассматриваемые вопросы: - фильтры и число параметров, обратное распространение ошибки; - тонкости глубокого обучения: предварительно обученные сети и трансферное обучение; - нормализация весов, выпадение связей; - борьба с переобучением и алгоритмы оптимизации.	
4	Распознавание объектов на видео. Рассматриваемые вопросы: - наивный подход и регрессия для обнаружения объектов; - метрики обнаружения объектов: мера Жаккара (Intersection over Union, IoU), интерполированная средняя точность (Average Precision, AP), и усредненная точность (mean AP, mAP); - методы детектирования объектов: предварительное генерирование области интереса (ROI) и одноподходные CNN; - реализации ROI-подхода: выборочный поиск (R-CNN), быстрый R-CNN (F-RCNN), ускоренный F-RCNN (Faster R-CNN), региональная полностью сверточная сеть (R-FCN); - реализации одноподходных CNN: YOLO, SSD, RetinaNet.	

$N_{\underline{0}}$			
п/п	Тематика лекционных занятий / краткое содержание		
5	Извлечение объектов и форм		
	Рассматриваемые вопросы:		
	- распознавание контуров: семантическая сегментация и сегментация экземпляров;		
	- выделение признаков: признаки, связанные с цветовыми диапазонами, признаки, получаемые из		
	метаданных изображений;		
	- задачи: удаление шумов, удаление дефектов, оцветнение изображений, увеличение размерности:		
	- обзор архитектур: архитектура дешифровщика-шифровщика (декодер-энкодер), SegNet, Unet.		
6	Генеративные модели		
	Рассматриваемые вопросы:		
	- автоэнкодеры и сценарии их использования;		
	- генеративно-состязательные сети (GAN);		
	- проблемы обучения GAN;		
	- передача стиля и создание художественного изображения.		
7	Механизмы поиска, подходящего датасета.		
	Рассматриваемые вопросы:		
	- переобучение и размер датасета;		
	- подготовка датасета: использование открытых баз, самостоятельный сбор и структурирование		
	датасета;		
	- наиболее популярные датасеты для компьютерного зрения.		
8	Системы управления процессами		
	Рассматриваемые вопросы:		
	- системы видеонаблюдения;		
	- системы организации информации;		
	- системы моделирования объектов окружающей среды.		

4.2. Занятия семинарского типа.

Практические занятия

№	Тематика практических занятий/краткое содержание
п/п	
1	Установка Jupyter Notebook
	В ходе практических занятий студенты знакомятся с установкой внешних пакетов поставщиков
	открытового и свободно распространяемого исходного кода на локальную машину и настройку
	развернутого приложения
2	Установка фреймворка PyTorch
	В ходе практических занятий студенты знакомятся с установкой внешних пакетов поставщиков
	открытового и свободно распространяемого исходного кода на локальную машину и настройку
	развернутого приложения
3	Поиск набора данных и подготовка его для обучения нейронной сети
	В ходе практических занятий студенты знакомятся с механизмами подбора данных, их
	структурирования и преобразования для обучения нейронной сети
4	Построение сверточной нейронной сети
	В ходе практических занятий студенты знакомятся с принципами создания простой свёрточной
	нейронной сети средствами библиотеки РуТогсh для языка программирования Python
5	Подбор готовых нейронных сетей для решения поставленной задачи
	В ходе практических занятий студент получает навык изучения различных готовых и уже
	натренированных нейронных сетей и выбора наиболее подходящей нейронной сети для решаемой
	задачи средствами библиотеки PyTorch для языка программирования Python

№ п/п	Тематика практических занятий/краткое содержание		
6	Дообучение готовых нейронных сетей		
	В ходе практических занятий студент получает навык обучения готовых нейронных сетей для		
	посталенных ему задач средствами библиотеки PyTorch для языка программирования Python		
7	Трансферное обучение		
	В ходе практических занятий студент получает навык использования предварительно обученной		
	сверточной нейронной сети на наборе схожих данных средствами библиотеки PyTorch для языка		
	программирования Python		
8	Развертывание и применение нейронных сетей на реальных задачах		
	В ходе практических занятий студент получает навык применить все полученные знания на		
	реальных задачах, ведущих ИТ компаний средствами библиотеки РуТогсh для языка		
	программирования Python		

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	Изучение рекомендованной литературы.
2	Подготовка к практическим занятиям.
3	Выполнение курсовой работы.
4	Подготовка к промежуточной аттестации.
5	Подготовка к текущему контролю.

4.4. Примерный перечень тем курсовых работ

- 1. Построить сверточную нейронную сеть для распознавания объектов «Вагонов различных родов»
- 2. Построить сверточную нейронную сеть для распознавания объектов «Наземных транспортных средств различных родов»
- 3. Построить сверточную нейронную сеть для распознавания объектов «Водных транспортных средств различных родов»
- 4. Построить сверточную нейронную сеть для распознавания объектов «Самолетов различных родов»
- 5. Построить сверточную нейронную сеть для распознавания объектов «Животных различных родов»
- 6. Построить сверточную нейронную сеть для распознавания объектов «Домашних животных различных родов»
- 7. Построить сверточную нейронную сеть для распознавания объектов «Сельскохозяйственных животных различных родов»
- 8. Построить сверточную нейронную сеть для распознавания объектов «Растений различных родов»
- 9. Построить сверточную нейронную сеть для распознавания объектов «Фруктов различных родов»

- 10. Построить генеративно-состязательную сеть для построения объектов «Вагонов различных родов»
- 11. Построить генеративно-состязательную сеть для построения объектов «Наземных транспортных средств различных родов»
- 12. Построить генеративно-состязательную сеть для построения объектов «Водных транспортных средств различных родов»
- 13. Построить генеративно-состязательную сеть для построения объектов «Самолетов различных родов»
- 14. Построить генеративно-состязательную сеть для построения объектов «Животных различных родов»
- 15. Построить генеративно-состязательную сеть для построения объектов «Домашних животных различных родов»
- 16. Построить генеративно-состязательную сеть для построения объектов «Сельскохозяйственных животных различных родов»
- 17. Построить генеративно-состязательную сеть для построения объектов «Растений различных родов»
- 18. Построить генеративно-состязательную сеть для построения объектов «Фруктов различных родов»

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

	онин диоцинаниы (модули).	
$N_{\overline{0}}$	Библиографическое описание	Место доступа
п/п	Broomerpaph recked emileaning	Wiesto Acetyna
1	Крейман, Г. Биологическое и компьютерное	https://e.lanbook.com/book/241193
	зрение / Г. Крейман; под редакцией Т. Б.	(дата обращения: 10.04.2025)
	Киселевой, Т. И. Люско; перевод с английского	
	И. Л. Люско. — Москва : ДМК Пресс, 2022. — 314	
	с. — ISBN 978-5-93700-100-9. — Текст :	
	электронный	
2	Терлецкий, А. С. Нейронные сети и	https://e.lanbook.com/book/439343
	искусственный интеллект: Основы нейронных	(дата обращения: 10.04.2025)
	сетей на языке Python: учебно-методическое	
	пособие / А. С. Терлецкий, Е. С. Терлецкая. —	
	Липецк : Липецкий ГПУ, 2023. — 76 с. — ISBN	
	978-5-907792-40-1. — Текст : электронный	
3	Джон Крон. Глубокое обучение в картинках.	https://medialex.brsu.by/NLP-
	Визуальный гид по искусственному интеллекту. –	BOOK/Kron_Glubokoe-
	Санкт-Петербург : Питер, 2021 400 c ISBN	obuchenie-v-kartinkah-Vizualnyy-
	978-5-4461-1574-7.	gid-po-iskusstvennomu-
		intellektu.665053.pdf (дата
		обращения: 28.10.2025)

4	Шапиро, Л. Компьютерное зрение: учебное	https://e.lanbook.com/book/417998
	пособие / Л. Шапиро, Д. Стокман; перевод с	(дата обращения: 10.04.2025)
	английского А. А. Богуславского под редакцией С.	
	М. Соколова. — 5-е изд. (эл.). — Москва :	
	Лаборатория знаний, 2024. — 763 с. — ISBN 978-	
	5-93208-725-1. — Текст : электронный	
5	Клетте, Р. Компьютерное зрение. Теория и	https://e.lanbook.com/book/131691
	алгоритмы: учебник / Р. Клетте; перевод с	(дата обращения: 10.04.2025)
	английского А. А. Слинкина. — Москва : ДМК	
	Пресс, 2019. — 506 с. — ISBN 978-5-97060-702-2.	
	— Текст : электронный	
6	Ян, Э. С. Программирование компьютерного	https://e.lanbook.com/book/93569
	зрения на языке Python / Э. С. Ян; перевод с	(дата обращения: 10.04.2025)
	английского А. А. Слинкин. — Москва: ДМК	
	Пресс, 2016. — 312 с. — ISBN 978-5-97060-200-3.	
	— Текст : электронный	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Электронно-библиотечная система Научно-технической библиотеки РУТ(МИИТ) (http://library.miit.ru/)

Электронно-библиотечная система издательства «Лань» (http://e.lanbook.com/)

Электронно-библиотечная система ibooks.ru (http://ibooks.ru/)

Открытый датасет для машинного обучения Kaggle (https://www.kaggle.com/)

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Прикладное программное обеспечение;

Браузер Microsoft Internet Explorer или его аналоги;

Пакет офисных программ Microsoft Office или его аналоги;

Среда разработки PyCharm Community Edition;

Пакетный менеджер pip3 или anaconda;

Среда разработки Jupyter Notebook.

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебные аудитории для проведения учебных занятий должны быть оснащенны компьютерной техникой и набором демонстрационного оборудования.

Учебные аудитории для проведения практических занятий должны быть оснащены персональными компьютерами вычислительного класса и набором демонстрационного оборудования.

9. Форма промежуточной аттестации:

Зачет во 2 семестре.

Курсовая работа во 2 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

заведующий кафедрой, доцент, к.н. кафедры «Цифровые технологии управления транспортными процессами»

старший преподаватель кафедры «Цифровые технологии управления транспортными процессами»

транспортными процессами» Е.А. Заманов

В.Е. Нутович

Согласовано:

Заведующий кафедрой ЦТУТП В.Е. Нутович

Председатель учебно-методической

комиссии Н.А. Андриянова