МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 08.03.01 Строительство, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Конструкции из дерева и пластмасс

Направление подготовки: 08.03.01 Строительство

Направленность (профиль): Промышленное и гражданское строительство

Форма обучения: Очно-заочная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ) О подписи: 2081

Подписал: заведующий кафедрой Федоров Виктор Сергеевич Дата: 02.06.2021

1. Общие сведения о дисциплине (модуле).

Целью освоения дисциплины является формирование у обучающихся компетенций, необходимых для решения задач, связанных с расчётом и конструированием конструкций промышленных и гражданских зданий и сооружений из древесины и пластмасс, обеспечением их долговечности на стадии проектирования и в процессе эксплуатации.

2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ПК-2 - Способен выполнять работы по проектированию строительных конструкций и оснований промышленных и гражданских зданий, обеспечивать механическую безопасность проектируемых и реконструируемых зданий и сооружений, в том числе с использованием проектно-вычислительных программных комплексов.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

основные положения нормативных документов, регламентирующих проектирование конструкций из дерева и пластмасс; основные модели и методы расчёта конструктивных элементов и несущих систем; основные формы и технические характеристики плоскостных конструкций из дерева и пластмасс; основные принципы проектирования конструкций и узлов; конструктивные возможности, особенности работы дерева и пластмасс в конструкциях; физико-механические свойства древесины и конструкционных пластмасс; конструктивные особенности конструкций из дерева и пластмасс промышленных и гражданских зданий и сооружений; основные способы конструкций, соединения элементов деревянных используемые строительстве; их преимущества, недостатки, технологические особенности; основные принципы проектирования технологии сборки конструкций из дерева и пластмасс при их изготовлении и монтаже; основы работы под нагрузкой элементов конструкций из дерева и пластмасс; особенности сопротивления элементов конструкций из дерева и пластмасс при различных напряженных состояниях; характерные конструктивные решения конструкций из дерева и пластмасс;

Уметь:

определять требования нормативных документов, необходимые для разработки конкретных конструктивных решений; составлять расчетную схему и определять степень ее адекватности с реальной конструкцией; конструировать и рассчитывать конструктивные элементы в составе конструкций из дерева и пластмасс для зданий и сооружений различного назначения; применять известные и разрабатывать новые узлы сопряжений элементов; выполнять расчёты конструктивных элементов и несущих систем на прочность, жёсткость и устойчивость;

Владеть:

навыками применения современных методов проектирования зданий, сооружений, обеспечивающих долговечность И экономическую ИХ эффективность на стадии проектирования и в процессе эксплуатации; конструирования узлов конструкций из дерева и пластмасс в соответствии с требованиями нормативных документов; самостоятельной разработки рациональных конструктивных решений; проектирования конструкций из дерева и пластмасс с назначением оптимальных размеров их сечений на основе принятой конструктивной схемы сооружения И комбинации действующих нагрузок;

- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 5 з.е. (180 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

		Количество часов		
Тип учебных занятий	Всего	Семестр		
		№9	№ 10	
Контактная работа при проведении учебных занятий (всего):	52	16	36	
В том числе:				
Занятия лекционного типа	26	8	18	
Занятия семинарского типа	26	8	18	

3.3. Объем дисциплины (модуля) в форме самостоятельной работы

обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 128 академических часа (ов).

- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

No	Томотумо томумомум и ромотуй / местис с со чермому	
Π/Π	Тематика лекционных занятий / краткое содержание	
1	Раздел 1. Древесина и пластмассы как конструкционные материалы	
	1.1. Области применения конструкций из дерева и пластмасс. Сырьевая база для получения	
	конструкционной древесины и пластмасс. Древесные породы. Анатомическое строение хвойных	
	пород. Химический состав древесины. Пороки древесины.	
	1.2. Основные компоненты и виды пластмасс и древесных пластиков применяемых для строительных	
	несущих и ограждающих конструкций. Синтетические смолы. Физические, механические и	
	технологические свойства древесины и пластмасс. Сопротивление разрушению и деформирование	
	древесины и пластмасс при длительном действии нагрузок.	
	1.3. Влияние основных внешних и внутренних факторов на прочностные и деформационные	
	характеристики древесины и конструкционных пластмасс. Влажность древесины и меры борьбы с ее	
	вредным влиянием. Конструктивные и химические меры защиты древесины от биологического,	
	энтомологического поражения и пожарной опасности.	
2	Раздел 2. Расчет деревянных элементов цельного поперечного сечения	
	2.1. Принципы расчета деревянных и пластмассовых конструкций по предельным состояниям.	
	Нормирование расчетных сопротивлений. Расчет элементов цельного сечения на центральное	
	растяжение, сжатие и продольный изгиб. Учет ослаблений сечения.	
	2.2. Поперечный изгиб элементов, расчет изгибаемых элементов на прочность и жесткость.	
	Скалывание при изгибе. Косой изгиб. Расчет сжато-изгибаемых и растянуто-изгибаемых элементов.	
	Расчет на устойчивость плоской формы деформирования.	
	2.3. Конструкция и расчет деревянных элементов составного сечения на податливых связях при	
	поперечном изгибе, центральном сжатии и сжатии с изгибом. Основы учета податливости.	
3	Раздел 3. Соединения элементов деревянных конструкций и их расчет	
	3.1. Классификация и области применения различных видов соединений элементов деревянных и	
	пластмассовых конструкций. Предъявляемые к ним требования, принципы расчета. Податливость	
	соединений. Контактные соединения. Лобовая врубка, методы конструирования и расчета.	
	3.2. Соединения на механических связях, особенности работы. Нагельные соединения, характеристика	
	работы, методы конструирования и расчета. Особенности соединений на гвоздях.	
	3.3. Соединения на зубчатых пластинах. Соединения на растянутых связях. Соединения на клею.	
	Требования, предъявляемые к клеевым соединениям. Основные принципы конструирования и расчета	

Ŋ <u>o</u>		
Π/Π	Тематика лекционных занятий / краткое содержание	
	клеевых соединений. Вклеенные стержни и их расчет.	
4	Раздел 4. Сплошные плоскостные конструкции	
	4.1. Основные формы плоскостных сплошных конструкций. Конструкции из цельной древесины:	
	настилы и обрешетка, прогоны и балки. Элементы деревянных конструкций составного сечения на	
	податливых связях и их расчет. Дощатоклееные балки. Армированные балки.	
	4.2. Распорные конструкции. Дощатоклееные арки, системы треугольного очертания.	
	Конструирование и расчет узлов. Рамы. Особенности конструирования и расчета.	
	4.3. Принципы расчета конструкций, выполняемых из различных материалов. Понятие о	
	клеефанерных балках. Клеефанерные плиты покрытия. Трехслойные панели и плиты с применением	
	пластмасс и асбестоцемента. Конструирование и расчет.	
5	Раздел 5. Сквозные плоскостные конструкции	
	5.1. Основные формы плоскостных сквозных конструкций. Балочные и распорные сквозные	
	конструкции.	
	5.2. Фермы из цельной древесины построечного изготовления. Фермы индустриального изготовления,	
	их конструирование и расчет.	
	5.3. Конструирование узлов ферм. Шпренгельные системы.	
6	Раздел 6. Конструктивные решения зданий с применением древесины	
	6.1. Обеспечение поперечной и продольной неизменяемости и устойчивости зданий и сооружений из	
	КДиП. Основные схемы связей и их расчет. Использование жесткости косых настилов и панелей	
	покрытий.	
	6.2. Основные формы и конструктивные особенности пространственных конструкций из дерева и	
	пластмасс. Распорные своды. Купола.	
7	Раздел 7. Основы технологии изготовления и эксплуатации конструкций из	
	древесины	
	7.1. Инженерное наблюдение за эксплуатацией несущих и ограждающих конструкций, их	
	периодическое обследование и ремонт.	
	7.2. Основные принципы и способы усиления деревянных несущих элементов.	
	7.3. Основные понятия о технологии изготовления деревянных и пластмассовых конструкций.	
	Требования к качеству лесоматериалов для строительных конструкций. Технологические процессы	
	изготовления конструкций из цельной и клееной древесины.	

4.2. Занятия семинарского типа.

Лабораторные работы

№ п/п	Наименование лабораторных работ / краткое содержание	
1	Раздел 1. Соединения элементов деревянных конструкций	
	1.1. Испытание лобовой врубки с одним зубцом	
	1.2. Испытание гвоздевого соединения	
	1.3. Испытание соединения на клею	

Практические занятия

№ п/п	Тематика практических занятий/краткое содержание	
1	Раздел 1. Ограждающие конструкции и элементы кровельных конструкций с	
	применением древесины	
	1.1. Сбор нагрузок на конструкции здания.	
	1.2. Конструирование и расчет клеефанерной панели покрытия.	
	1.3. Конструирование и расчет стеновой панели типа «СЭНДВИЧ».	

№ п/п	Тематика практических занятий/краткое содержание	
	1.4. Конструирование и расчет неразрезного спаренного прогона.	
	1.5. Конструирование и расчет дощатогвоздевого щита покрытия.	
	1.6 Деревянные стропила. Шпренгельные системы.	
2	Раздел 2. Деревянные конструкции каркаса одноэтажного производственного здания	
	2.1 Расчет сжато-изгибаемой стойки промышленного здания.	
	2.2. Конструирование и расчет клееной двухскатной балки покрытия.	
	2.3. Конструирование и расчет гнутоклееной рамы.	
	2.4. Конструирование и расчет конькового и опорного узлов гнутоклееной рамы, карнизного узла	
	дощатоклееной рамы из	
	прямолинейных элементов.	
	2.5. Фермы треугольного очертания. Многоугольные брусчатые фермы. Фермы сегментного	
	очертания с клееным верхним поясом.	
	2.6. Основные схемы связей и их расчет. Использование жесткости покрытия. Работа плоскостных	
	конструкций при монтаже.	

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы	
1	Подготовка к защите курсового проекта. Подготовка к практическим занятиям, к	
	лабораторным работам. Работа с лекционным материалом. Работа с нормативной,	
	справочной и учебной литературой.	
2	Выполнение курсового проекта.	
3	Подготовка к промежуточной аттестации.	
4	Подготовка к текущему контролю.	

4.4. Примерный перечень тем курсовых проектов

В течение семестра студент выполняет курсовой проект по теме «Деревянные конструкции каркаса одноэтажного производственного здания».

Курсовой проект состоит из кейс-заданий, исходные данные для которых каждому студенту выдаются в соответствии с индивидуальным вариантом.

Примерная тематика курсовых проектов:

- 1. Конструкции покрытия производственного здания из клеедеревянных ферм;
- 2. Конструкции покрытия производственного здания из металлодеревянных ферм;
- 3. Конструкции покрытия производственного здания из цельнодеревянных ферм;
- 4. Конструкции покрытия производственного здания из клеедеревянных арок с затяжкой;
- 5. Конструкции покрытия производственного здания из клеедеревянных арок без затяжки;

- 6. Конструкции покрытия производственного здания из клеедеревянных балок;
- 7. Конструкции покрытия производственного здания из клеефанерных ребристых балок;
- 8. Конструкции покрытия производственного здания из клееармированных балок;
- 9. Конструкции каркаса производственного здания из клеедеревянных рам;
- 10. Конструкции каркаса производственного здания из деревянных гнутоклееных трехшарнирных рам.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
	Расчет конструкций из дерева и пластмасс учеб. пособие для вузов по направлению "Строительство"3-е изд., стер. Бойтемиров Ф.А М.: Академия, 2007. 160 с.	НТБ МИИТ 624 Б77 978-5-7695-4407-1

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

http://library.miit.ru – научно-техническая библиотека РУТ (МИИТ)

https://ibooks.ru — электронно-библиотечная система

https://e.lanbook.com/ – электронно-библиотечная система https://elibrary.ru – электронная научная библиотека. https://www.book.ru/ – электронно-библиотечная система от правообладателя

http://www.dwg.ru – специализированный строительный портал

https://www.faufcc.ru — сайт федерального центра нормирования, стандартизации и технической оценки соответствия в строительстве

http://www.npadd.ru - Ассоциация деревянного домостроения

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Для проведения занятий необходим стандартный программный комплекс Microsoft Office, продукты компании Autodesk (Revit)

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Аудитория с мультимедиа аппаратурой для проведения лекционных занятий. Учебная аудитория для практических занятий, лабораторных работ и самостоятельной работы студентов. Макеты конструкций для проведения лабораторных работ. ПК с необходимым программным обеспечением для курсового проектирования

9. Форма промежуточной аттестации:

Зачет в 9 семестре.

Курсовой проект в 10 семестре.

Экзамен в 10 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы

Доцент, доцент, к.н. кафедры «Строительные конструкции, здания и сооружения»

Шавыкина Марина

Витальевна

Лист согласования

Заведующий кафедрой СКЗиС

В.С. Федоров

Председатель учебно-методической

комиссии

М.Ф. Гуськова