МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 01.03.02 Прикладная математика и информатика, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Концепции современного естествознания

Направление подготовки: 01.03.02 Прикладная математика и

информатика

Направленность (профиль): Математическое моделирование и системный

анализ

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 5665

Подписал: заведующий кафедрой Нутович Вероника

Евгеньевна

Дата: 08.04.2025

1. Общие сведения о дисциплине (модуле).

Целью освоения дисциплины (модуля) является:

- ознакомление студентов с основными, наиболее типичными математическими моделями и идеями, встречающимися в современном естествознании.

Задачами дисциплины являются:

- формирование личности студента, развитие его интеллекта и умения логически и алгоритмически мыслить, формирование умений и навыков, необходимых при практическом применении теории концепции современного естествознания;
- формирование навыков решения задач, встречающихся в современном естествознании.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ПК-4 - Уметь ставить цели создания системы, разрабатывать концепцию системы и требования к ней, выполнять декомпозицию требований к системе.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- основные концепции современного естествознания;
- методологические принципы современного естествознания.

Уметь:

- формулировать постановку задачи и излагать ее.

Владеть:

- анализом и сравнением имеющихся методов и средств решения прикладных задач;
 - методологическими принципами современного естествознания.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 3 з.е. (108 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип үчебных занятий	Количество часов	
тип учесных занятии		Семестр №7
Контактная работа при проведении учебных занятий (всего):	80	80
В том числе:		
Занятия лекционного типа	48	48
Занятия семинарского типа	32	32

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 28 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

№ п/п	Тематика лекционных занятий / краткое содержание		
1	Дискретные и непрерывные модели. Континуализация и дискретизация в моделях		
	естествознания		
	Рассматриваемые вопросы:		
	- переход от дискретных моделей к непрерывным и обратно.		
2	Уравнения механики одной материальной точки.		
	Рассматриваемые вопросы:		
	- уравнения движения в консервативном и неконсервативном случаях.		
3	Уравнения механики материальной точки. Многомерный случай		
	Рассматриваемые вопросы:		
	- уравнения движения в консервативном случае.		
4	Уравнения механики систем материальных точек. Одномерный случай		
	Рассматриваемые вопросы:		
	- уравнения движения в консервативном случае.		

№ п/п 5 Уравнения ме:	Тематика лекционных занятий / краткое содержание	
	M v v	
e publication	каники систем материальных точек. Многомерный случай	
Рассматриваемые	· · · · · · · · · · · · · · · · · · ·	
_	тения в консервативном случае.	
	ы. Сплошные и дискретные среды.	
	Рассматриваемые вопросы:	
- связь дискретно	го и непрерывного моделирования.	
7 Принцип наим	Принцип наименьшего действия — возникновение и универсальный характер	
Рассматриваемые	Рассматриваемые вопросы:	
- универсальност	- универсальность моделирования.	
8 Принцип наим	Принцип наименьшего действия в оптике — закон Ферма и закон Снеллиуса	
Рассматриваемые	Рассматриваемые вопросы:	
	ом наименьшего действия в механике.	
9 Принцип наим	пеньшего действия в механике — подход Мопертюи, Лагранжа и	
Гамильтона		
Рассматриваемые	е вопросы:	
- связь между раз	личными подходами к принципу наименьшего действия.	
10 Уравнение Эй	лера для функционалов различного вида	
Рассматриваемые	•	
	я уравнения Эйлера.	
11 Преобразован	Преобразование Лежандра и его связь с гамильтонианом	
_	Рассматриваемые вопросы:	
- построение гам		
Рассматриваемые	•	
	ерпретация гамильтониана.	
	система уравнений	
Рассматриваемые	е вопросы: этоновых систем уравнений.	
	инвариант Пуанкаре	
Рассматриваемые	в вопросы. В вегрального инварианта Пуанкаре и его свойства.	
15 Уравнение Ли		
Рассматриваемые		
	ния Лиувилля для заданного фазового потока.	
	ния и его связь с уравнениями диффузии и теплопроводности.	
_	аевых условий.	
Рассматриваемые	·	
*	модели диффузии при различных вариантах закона Фурье.	
	шения — ударные волны	
Рассматриваемые		
_	- автомодельные решения;	
- соотношение Г		
18 Особенности ј	распространения волн в пространствах разной размерности	
Рассматриваемые		
- формулы Далам	бера, Кирхгофа и Пуассона.	
19 Уравнения Ма	ксвелла - фундаментальные уравнения электродинамики	
Рассматриваемые	е вопросы:	

№ п/п	Тематика лекционных занятий / краткое содержание
	- первая группа уравнений Максвелла;
	- вторая группа уравнений Максвелла.

4.2. Занятия семинарского типа.

Практические занятия

NC-	практи теские запития	
№ п/п	Тематика практических занятий/краткое содержание	
1	Дифференциальные уравнения второго порядка. Первые интегралы. Понижение	
	порядка	
	В результате выполнения заданий студент приобретает навыки решения задач по построению	
	решений уравнений второго порядка	
2	Системы дифференциальных уравнений. Фазовые портреты	
	В результате выполнения заданий студент приобретает навыки решения задач по построению	
	фазовых портретов	
3	Физическая интерпретация систем дифференциальных уравнений на плоскости	
	В результате выполнения заданий студент приобретает навыки решения задач по построению	
	физической интерпретации решений линейных систем на плоскости	
4	Уравнение Эйлера для различных функционалов. Методы решения	
	В результате выполнения заданий студент приобретает навыки решения задач по построению	
	решений уравнений Эйлера	
5	Уравнение Эйлера для нескольких функций	
	В результате выполнения заданий студент приобретает навыки решения задач по построению	
	решение систем уравнений Эйлера	
6	Уравнение Эйлера для нескольких переменных	
	В результате выполнения заданий студент приобретает навыки решения задач по анализу	
	уравнений с частными производными, являющимися уравнениями Эйлера	
7	Построение гамильтонианов для заданных функционалов	
	В результате выполнения заданий студент приобретает навыки решения задач по построению	
	гамильтонианов для различных функционалов	
8	Гамильтонова система уравнений. Методы анализа	
	В результате выполнения заданий студент приобретает навыки решения задач по анализу свойств гамильтоновых систем	
9	Оптико-механическая аналогия на примерах	
	В результате выполнения заданий студент приобретает навыки решения задач по построению	
	оптико-механической аналогии	
10	Системы уравнений в нормальной и симметрической форме. Их взаимосвязь	
	В результате выполнения заданий студент приобретает навыки решения задач по построению	
	решений систем нормальной и симметрической форме	
11	Первые интегралы, физический смысл	
	В результате выполнения заданий студент приобретает навыки решения задач по построению	
	первых интегралов систем уравнений	
12	Уравнение Лиувилля и его решение в бездивергентном случае	
	В результате выполнения заданий студент приобретает навыки решения задач по построению	
	решений уравнения Лиувилля	
13	Плотность интегрального инварианта Пуанкаре	
	В результате выполнения заданий студент приобретает навыки решения задач по построению	
	плотности интегрального инварианта Пуанкаре	

$N_{\underline{0}}$	Тематика практических занятий/краткое содержание		
п/п	томатика практи теских запятим краткое содержание		
14	Закон неразрывности и его следствия		
	В результате выполнения заданий студент приобретает навыки решения задач по построению		
	математических моделей, основанных на уравнении неразрывности		
15	Анализ моделей, основанных на законе неразрывности		
	В результате выполнения заданий студент приобретает навыки решения задач по построению		
	автомодельных решений		
16	Первая группа уравнений системы Максвелла, как следствие закона		
	неразрывности. Вторая группа уравнений системы Максвелла — закон Фарадея		
	В результате выполнения заданий студент приобретает навыки решения задач по построению		
	математических моделей электродинамики с учетом калибровки Лоренца		

4.3. Самостоятельная работа обучающихся.

No	Вил самостоятелиной работи	
п/п	Вид самостоятельной работы	
1	Работа с литературой.	
2	Работа с лекционным материалом.	
3	Текущая подготовка к занятиям.	
4	Выполнение курсовой работы.	
5	Подготовка к промежуточной аттестации.	
6	Подготовка к текущему контролю.	

4.4. Примерный перечень тем курсовых работ

- 1. Задача двух тел
- 2. Оптико-механическая аналогия
- 3. Одномерные нелинейные системы
- 4. Инварианты Пуанкаре
- 5. Бездивергентные системы
- 6. Полный интеграл
- 7. Пфаффовы системы
- 8. Устойчивость по Пуассону
- 9. Устойчивость по Бирхгофу
- 10. Устойчивость по Лагранжу.
- 11. Аналог ротора в многомерном случае
- 12. Калибровка Лоренца
- 13. Уравнения магнитной гидродинамики.
- 14. Световой конус

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

No	Библиографическое описание	Место доступа
п/п		5.55155 A 515 y 555
1	Мышкис, А. Д. Прикладная математика для	https://znanium.ru/read?id=250263
	инженеров. Специальные курсы: учебное пособие	(дата обращения: 25.06.2025)
	/ А. Д. Мышкис. — Москва : ФИЗМАТЛИТ, 2006.	
	— 688 с. — ISBN 978-5-9221-0747-1	
2	Кожевников, Н. М. Концепции современного	https://e.lanbook.com/book/212264
	естествознания: учебное пособие / Н. М.	(дата обращения: 09.04.2025)
	Кожевников. — 5-е изд., испр. — Санкт-	
	Петербург : Лань, 2022. — 384 с. — ISBN 978-5-	
	8114-0979-2	
3	Бабаева, М. А. Концепции современного	https://e.lanbook.com/book/183370
	естествознания: учебник для вузов / М. А.	(дата обращения: 09.04.2025)
	Бабаева. — 2-е изд. доп. — Санкт-Петербург :	
	Лань, 2021. — 436 с. — ISBN 978-5-8114-8564-2	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Научно-техническая библиотека РУТ (МИИТ) (http://library.miit.ru);

- Информационный портал Научная электронная библиотека eLIBRARY.RU (www.elibrary.ru);
 - Образовательная платформа «Юрайт» (https://urait.ru/);
- Электронно-библиотечная система издательства «Лань» (http://e.lanbook.com/);
- Интернет-университет информационных технологий (http://www.intuit.ru/).
- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Операционная система Windows;

- Microsoft Office:
- MS Teams;
- Поисковые системы.
- 8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Для проведения занятий лекционного типа требуются аудитории, оснащенные компьютерной техникой и наборами демонстрационного оборудования.

Для практических занятий – наличие персональных компьютеров.

9. Форма промежуточной аттестации:

Зачет в 7 семестре.

Курсовая работа в 7 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

профессор, профессор, д.н. кафедры «Цифровые технологии управления транспортными процессами»

А.М. Филимонов

Согласовано:

Заведующий кафедрой ЦТУТП

В.Е. Нутович

Председатель учебно-методической

комиссии Н.А. Андриянова