МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 02.03.02 Фундаментальная информатика и информационные технологии, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Кратные интегралы и теория поля

Направление подготовки: 02.03.02 Фундаментальная информатика и

информационные технологии

Направленность (профиль): Квантовые вычислительные системы и сети

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 2672

Подписал: И.о. заведующего кафедрой Платонова Ольга

Алексеевна

Дата: 24.10.2024

1. Общие сведения о дисциплине (модуле).

Целью дисциплины «Кратные интегралы и теория поля» является изучение криволинейных, поверхностных и кратных интегралов, ознакомление с основными формулами вычисления двойных и тройных интегралов, характеристик векторных полей: поток вектора через поверхность, ротор, циркуляцию, дивергенцию векторного поля.

Основными задачами дисциплины являются:

- освоение навыков вычисления определенных интегралов от скалярных и векторных полей, криволинейных интегралов первого и второго рода;
- освоение понятий: поток вектора через поверхность, ротор, циркуляция векторного поля;
 - знать классификацию векторных полей;
 - изучение методов вычисления поверхностных и объемных интегралов;
 - понимание и применение теорем Гаусса, Стокса и Грина;
- развитие навыков решения задач, связанных с дивергенцией и ротором векторных полей;
 - применение теории поля к физическим задачам и моделям.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ОПК-1 - Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной деятельности.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- Основные понятия теории дифференциальных уравнений и функции комплексного переменного.

Уметь:

- Применять полученные знания по дисциплине при решении задач.

Владеть:

- навыком выбора оптимального метода решения в зависимости от постановки задачи;
- навыком самопроверки и оценки правдоподобности полученного результата.

- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 4 з.е. (144 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
	Всего	Семестр №3
Контактная работа при проведении учебных занятий (всего):	48	48
В том числе:		
Занятия лекционного типа	32	32
Занятия семинарского типа	16	16

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 96 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

№ п/п	Тематика лекционных занятий / краткое содержание	
1	Кратные интегралы	
	Краткое содержание:	
	- Рассмотрение основных понятий двойных и тройных интегралов, ознакомление с их свойствами и	

№	
п/п	Тематика лекционных занятий / краткое содержание
	применением Геометрический смысл двойного интеграла.
2	Вычисление интегралов в системе декартовых и полярных координат
	Краткое содержание:
	- Вычисление двойного интеграла в декартовых координатах
	путем сведения его к повторному.
	- Вычисление двойного интеграла в полярных координатах.
	- Вычисление тройного интеграла в декартовых координатах.
3	Криволинейные системы координат в трехмерном пространстве
	- Криволинейные системы координат в трехмерном пространстве.
	- Замена переменных в кратных интегралах
4	Криволинейные интегралы
	Краткое содержание:
	- Рассмотрение свойств и вычислений криволинейных интегралов I и II рода
5	Условия независимости криволинейного интеграла ІІ рода от пути интегрирования
	Краткое содержание:
	- Рассмотрение условий независимости криволинейного интеграла II рода от пути интегрирования.
	- Применение формулы Грина.
6	Поверхностные интегралы
	Краткое содержание:
- Рассмотрение свойств и вычислений поверхностных интегралов I и II рода.	
7	Формулы вычисления поверхностных интегралов
	Краткое содержание:
	- Связь поверхностных интегралов первого и второго рода.
8	- Применение формул Гаусса-Остроградского и Стокса.
0	Геометрические и физические приложения кратных интегралов Геометрические и физические приложения кратных интегралов
0	
9	Геометрические и физические приложения криволинейных и поверхностных
	интегралов
	Краткое содержание:
	- Рассмотрение применения криволинейных и поверхностных интегралов в геометрии и физике Вычисление объемов и площадей, определение центров масс, анализ потоков векторных полей
	- вычисление объемов и площадей, определение центров масс, анализ потоков векторных полей через поверхности и кривые.
10	Краткое содержание:
10	Краткое содержание: Краткое содержание:
	- Рассмотрение скалярного поля.
	- Определение градиента поля.
	- Вычисление производной по направлению.
	- Рассмотрение свойств и вычислений скалярного и векторного полей.
11	Элементы теории поля
	Краткое содержание:
	- Циркуляция векторного поля вдоль кривой.
	- Ротор векторного поля.
	- Поток векторного поля.
	- Дивергенция векторного поля.
12	Дифференциальные операции второго порядка
	Краткое содержание:
	- Применение теоремы Остроградского.

№	Тематика лекционных занятий / краткое содержание	
п/п	темитика лекционных запятии / краткое содержание	
	- Оператор Гамильтона, его использование и свойства.	
	- Дифференциальные операции второго порядка	
13	Циркуляция векторного поля по замкнутому контуру	
	Краткое содержание:	
	- Рассмотрение циркуляции векторного поля по замкнутому контуру.	
	- Анализ векторной формы теоремы Стокса.	
14	Соленоидальное и гармоническое векторные поля	
	Краткое содержание:	
	- Рассмотрение классификации полей.	
	- Рассмотрение свойств соленоидального векторного поля, включая его определение и основные	
	характеристики.	
15	Уравнения неразрывности	
	Краткое содержание:	
	- Изучение уравнения неразрывности.	
	- Анализ оператора Лапласа, его применение в физических задачах.	
16	Потенциальное векторное поле	
	Краткое содержание:	
	- Вычисления и свойства потенциального векторного поля.	
	- Изучение понятия вихря векторного поля.	

4.2. Занятия семинарского типа.

Практические занятия

No	Тематика практических занятий/краткое содержание		
Π/Π			
1	Кратные интегралы		
	Краткое содержание: Студенты изучают двойной и тройной интегралы, их свойства. Они проводят		
	анализ геометрического смысла двойного интеграла.		
	В результате работы студенты получают навыки применения двойных и тройных интегралов для		
	вычисления объемов, площадей и центров масс.		
2	Криволинейные интегралы I и II рода		
	Краткое содержание: Студенты изучают свойства криволинейных интегралов. Проводят расчеты		
	условий независимости криволинейного интеграла 2-го рода от пути интегрирования.		
	В результате работы студенты получают навыки вычисления криволинейных интегралов и их		
	применение в физических задачах.		
3	Поверхностные интегралы I и II рода		
	Краткое содержание: Студенты изучают свойства поверхностных интегралов. Анализируют и		
	доказывают связь между поверхностными интегралами первого и второго рода при помощи вычислений.		
	В результате работы студенты получают навыки вычислять поверхностные интегралы и применять		
	их для анализа потоков векторных полей.		
4	Теоремы Грина, Стокса и Гаусса-Остроградского		
	Краткое содержание: Студенты проводят анализ и доказательство теорем Грина, Стокса и Гаусса-		
	Остроградского, применяют их на практике в задачах.		
	В результате работы студенты получают навыки применения теорем для решения задач геометрии и		
	механики.		
5	Дифференциальные операции второго порядка		
	Краткое содержание: Студенты изучают понятия ротора и дивергенции векторного поля.		
	Применяют на практике оператор Гамильтона.		

№	Тематика практических занятий/краткое содержание		
п/п	тематика практических занятии/краткое содержание		
	В результате работы студенты получают навыки вычисления ротора и дивергенции, применение в		
	физических задачах.		
6	Геометрические и физические приложения кратных интегралов		
	Краткое содержание: Студенты осуществляют применение двойных и тройных интегралов в		
	геометрии и физике.		
	В результате работы студенты получают навыки решения задач, связанных с теплопередачей.		
7	Циркуляция векторного поля и потенциальные поля		
	Краткое содержание: Студенты изучают основы циркуляции векторного поля по замкнутому		
	контуру. Проводят анализ потенциальных векторных полей.		
	В результате работы студенты получают навыки вычисления циркуляции и понимание		
	потенциальных полей.		
8	Соленоидальные и гармонические векторные поля		
	Краткое содержание: Студенты изучаются свойства соленоидальных векторных полей. Применяют		
	на практике уравнения неразрывности.		
	В результате работы студенты получают навыки понимания характеристик соленоидальных полей и		
	их применение.		

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы	
1	Работа с лекционным материалом	
2	Подготовка к практическим работам	
3	Подготовка к промежуточной аттестации.	
4	Подготовка к текущему контролю.	

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	«Ракул Е. А. Кратные интегралы: учебно- мето-дическое пособие / Е. А. Ракул. — Брянск: Брянский ГАУ, 2020. — 57 с.» (Ракул, Е. А. Кратные интегралы: учебнометодическое пособие / Е. А.Ракул. — Брянск: Брянский ГАУ, 2020. — 57 с. — Текст: электронный // Лань	URL:https://e.lanbook.com/book/172098
2	: электронно- Методы вычисления пределов: учеб. пособие по дисц. Высшая математика для студ. ИТТСУ дневной и дистанционной форм	URL:https://library.miit.ru/bookscatalog/metod/DC-574.pdf

	обучения / М. Е. Булатникова, М. Г.	
	Гиоргадзе, Т. В. Ме-ренкова;	
	МИИТ. Каф. Высшая и вычисли-	
	тельная математика М.:	
	РУТ(МИИТ), 2017 36 с.	
3	Математический анализ: конспект	URL:https://library.miit.ru/bookscatalog/metod/DC-
	лекций для всех спец. ИТТСУ. Ч.7.	356.pdf
	Кратные и криволиней-ные	
	интегралы / О. А. Платонова;	
	МИИТ. Каф. Высшая и	
	вычислительная математика.М.:	
	РУТ(МИИТ), 2017 70 с.	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Научно-техническая библиотека РУТ(МИИТ) http://library.miit.ru/

Форум специалистов по информационным технологиям http://citforum.ru/

Интернет-университет информационных технологий http://www.intuit.ru/

Тематический форум по информационным технологиям http://habrahabr.ru/.

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Microsoft Windows
Microsoft Office
Интернет-браузер (Yandex и др.)

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебная аудитория для проведения учебных занятий (занятий лекционного типа, практических занятий):

- мультимедийное оборудование, компьютер преподавателя.

Аудитория подключена к сети «Интернет».

9. Форма промежуточной аттестации:

Зачет в 3 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, к.н. кафедры «Вычислительные системы, сети и информационная безопасность»

Я.М. Голдовский

Согласовано:

Заведующий кафедрой ВССиИБ

Б.В. Желенков

и.о. заведующего кафедрой ВМ

О.А. Платонова

Председатель учебно-методической

комиссии

Н.А. Андриянова