МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 38.03.01 Экономика, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Линейная алгебра

Направление подготовки: 38.03.01 Экономика

Направленность (профиль): Экономика и инженерия транспортных

систем. Программа двойного диплома с

Высшей школой экономики

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

D подписи: 366399

Подписал: И.о. заведующего кафедрой Курзина Ангелина

Михайловна

Дата: 18.11.2025

1. Общие сведения о дисциплине (модуле).

Целями изучения дисциплины являются:

- Обеспечение студентов фундаментальными знаниями по линейной алгебре, необходимыми для анализа и моделирования процессов в экономике и инженерии транспортных систем.
- Формирование навыков использования методов линейной алгебры для решения прикладных задач оптимизации и построения экономических моделей.
- Развитие аналитического мышления и умения применять системный подход в работе с математическими данными.
- Создание условий для формирования базовых компетенций, связанных с использованием линейной алгебры в контексте профессиональной деятельности.

Задачами изучения дисциплины являются:

- Изучить основные понятия и методы линейной алгебры, включая теорию векторных пространств, линейных отображений и матричного анализа.
- Освоить способы решения систем линейных уравнений, применения линейного программирования и анализа данных.
- Сформировать навыки применения математических методов для моделирования, оптимизации и разработки экономических моделей.
- Обеспечить использование современных педагогических методов и ресурсов для изучения дисциплины, включая цифровые инструменты и базы данных.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **УК-1** Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач;
- **УК-2** Способен определять круг задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- Основы векторной алгебры, матричного анализа, теории линейных и евклидовых пространств.
- Основы теории линейных отображений и операторов, квадратичных и билинейных форм.

Уметь:

- Выбирать методы анализа и интерпретации данных в зависимости от условий задачи.
- Применять методы линейной алгебры для решения прикладных задач оптимизации.
 - Анализировать математические модели в профессиональной сфере.

Владеть:

- Техниками и методами векторного и матричного анализа для решения количественных прикладных и теоретических задач.
- Навыками построения аналитических выводов из математических данных.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 7 з.е. (252 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
	Всего	Семестр №1
Контактная работа при проведении учебных занятий (всего):	60	60
В том числе:		
Занятия лекционного типа	30	30
Занятия семинарского типа	30	30

3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 192 академических часа (ов).

3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.

4. Содержание дисциплины (модуля).

4.1. Занятия лекционного типа.

$N_{\underline{0}}$			
Π/Π	Тематика лекционных занятий / краткое содержание		
1	Комплексные числа		
	Рассматриваемые вопросы:		
	- определение комплексных чисел, геометрическая интерпретация, тригонометрическая форма,		
	операции (сложение, умножение, деление, вычисление корней);		
	- многочлены: основная теорема алгебры, разложение многочлена на неприводимые множители.		
2	Числовые векторы		
	Рассматриваемые вопросы:		
	- определение числовых векторов, операции над числовыми векторами (сложение, умножение на		
	число, скалярное произведение);		
	- линейная зависимость и независимость числовых векторов;		
	- ранг набора векторов.		
3	- Экономические примеры: индексы Ласпейреса и Пааше оценки инфляции.		
3	Элементы матричной алгебры		
	Рассматриваемые вопросы:		
	- определение числовой матрицы, ранг матрицы, типы матриц;		
	- приведение матрицы к ступенчатому и каноническому виду, операции над матрицами (сложение		
	умножение на число, транспонирование, матричное умножение, степени матриц и многочлены от матриц).		
	- экономические примеры: технологические матрицы и линейные модели производственных		
	процессов.		
4	Определитель матрицы		
	Рассматриваемые вопросы:		
	- четыре определения,		
	- дополнительные свойства,		
	- приложение к теории систем линейных уравнений и геометрии.		
5	Обратная матрица. Системы линейных уравнений.		
	Рассматриваемые вопросы:		
	- Миноры и теорема о ранге матрицы.		
	- Обратимость матриц и обратная матрица.		
	- Простейшие матричные уравнения.		
	- Системы линейных уравнений с квадратной невырожденной матрицей: решение методом		
	обратной матрицы и методом Крамера.		
	- Экономические примеры: обратные задачи в линейных моделях производственных процессов.		
6	Системы линейных уравнений общего вида.		
	Рассматриваемые вопросы:		

No		
	Тематика лекционных занятий / краткое содержание	
п/п		
	- теоремы о структуре множества решений,	
	- решение с.л.у. методом Гаусса и Гаусса-Жордана.	
7		
	Рассматриваемые вопросы:	
	- определение, способы вычисления псевдообратной матрицы,	
	- нахождение нормальных псевдорешений с.л.у. с помощью псевдообратной матрицы.	
	- экономические примеры: использование нормальных псевдорешений при построении линейной	
	аппроксимации эмпирических данных с помощью метода наименьших квадратов	
8	1 1	
	Рассматриваемые вопросы:	
	- определение линейного пространства, примеры,	
	- теорема о базисе, размерность пространства, координаты вектора в базисе, понятие	
	подпространства;	
9	- переход к новому базису и соответствующее преобразование координат.	
9	Линейные отображения	
	Рассматриваемые вопросы: - определение и примеры линейного отображения,	
	- образ и ядро линейного отображения,	
	- матрица линейного отображения (оператора).	
	- преобразование матрицы линейного преобразования при переходе к новому базису.	
	- понятие о подобных матрицах.	
10	Собственные значения и собственные векторы линейных операторов	
10	Рассматриваемые вопросы:	
	- Инвариантные подпространства линейных операторов.	
	- Собственные значения и собственные векторы линейных операторов и матриц.	
	- Экономические примеры: нахождение формулы общего члена рекуррентно заданной	
	последовательности в дискретных моделях экономических процессов.	
	- Неотрицательные и продуктивные матрицы. Экономический пример: модель Леонтьева	
	межотраслевого баланса.	
11	Диагонализация матриц. Симметричные и ортогональные матрицы	
	Рассматриваемые вопросы:	
	- Диагонализуемость и диагонализация матриц над полем С и над полем R.	
	- Использование диагонального вида матрицы для нахождения ее степени.	
	- Симметричные и ортогональные матрицы.	
	- Диагонализуемость симметричных матриц.	
12	Квадратичные формы	
	Рассматриваемые вопросы:	
	- Квадратичные формы: определение, матрицы квадратичных форм, преобразование квадратичной	
	формы при переходе к новому базису (линейной замене координат), классы знакоопределенности	
	квадратичных форм.	
	- Экономические примеры: использование классификации квадратичных форм в простейших	
1.0	задачах оптимизации.	
13	Жорданова форма матрицы.	
	Рассматриваемые вопросы:	
	- Использование жордановой формы матрицы для нахождения ее степени.	
	- Экономические примеры: нахождение формулы общего члена рекуррентно заданной	
4.4	последовательности в дискретных моделях экономических процессов (общий случай).	
14	Евклидовы пространства.	
	Рассматриваемые вопросы:	
	- Определение евклидовых пространств, примеры, основные свойства.	

№	Тематика лекционных занятий / краткое содержание		
П/П			
	- Ортогональные и ортонормированные базисы.		
	- Ортогонализация Грама-Шмидта.		
	- Расстояние до подпространства.		
15	Элементы линейного программирования.		
	Рассматриваемые вопросы:		
	- задачи линейного программирования,		
	- графический метод решения з.л.п.,		
	- понятие о симплекс-методе решения з.л.п.,		
	- двойственная задача линейного программирования и теоремы двойственности.		
	- экономические примеры: теневые цены ресурсов в задаче о распределении ресурсов; задачи,		
	сводящиеся к задачам линейного программирования: задача о раскрое материала, задача о рационе,		
	задача о максимальном потоке, транспортная задача и др.		

4.2. Занятия семинарского типа.

Практические занятия

	практические запятия	
№ п/п	Тематика практических занятий/краткое содержание	
1	Комплексные числа.	
	В результате работы студент научится осуществлять операции с комплексными числами, решать	
	уравнения и системы уравнений с комплексными числами, раскладывать многочлены на множители	
	с использованием вычисления их комплексных корней.	
2	Числовые векторы. Матрицы.	
	В результате работы студент научится осуществлять операции над векторами, устанавливать	
	линейную зависимость/независимость наборов векторов; приводить матрицы к ступенчатому и	
	каноническому виду; вычислять ранг матрицы.	
3	Операции над матрицами	
	В результате работы студент научится осуществлять операции над матрицами: складывать,	
	умножать на число, транспонировать, умножать матрицы между собой.	
4	Определитель матрицы	
	В результате работы студент научится вычислять определитель матрицы с использованием свойст	
	определителя.	
5	Ранг матрицы. Обратная матрица.	
	В результате работы студент научится вычислять ранг матрицы методом максимальных миноров;	
	находить обратную матрицу; решать простейшие матричные уравнения и с.л.у. с квадратной обратимой матрицей.	
6	Решение систем линейных уравнений.	
	В результате работы студент научится решать с.л.у. общего вида методом Гаусса и Гаусса-Жордана.	
7	Псевдообратные матрицы и псевдорешения систем линейных уравнений.	
	В результате работы студент научится находить псевдообратную матрицу; находить нормальное	
	псевдорешение с.л.у. методом обратной матрицы; находить уравнения линейной аппроксимации	
	эмпирических данных и использовать линейную аппроксимацию в задаче прогнозирования.	
8	Проведение контрольной работы 1.	
9	Линейные пространства и линейные операторы.	
	В результате работы студент научится находить матрицу перехода, вычислять координаты вектора	
	при переходе к новому базису, находить матрицу линейного оператора в различных базисах.	
10	Собственные значения и собственные векторы матриц и линейных операторов	
	В результате работы студент научится находить собственные значения и собственные векторы	

№ п/п	Тематика практических занятий/краткое содержание		
	матриц и линейных операторов; диагонализитровать матрицы; вычислять степени диагонализуемых матриц; исследовать матрицы на продуктивность.		
11	Квадратичные формы		
	В результате работы студент научится решать задачи на диагонализацию симметричной матрицы с помощью ортогональной; приводить квадратичную форму к каноническому виду; исследовать квадратичную форму на знакоопределенность; приводить квадратичную форму к нормальному виду методом Лагранжа.		
12	Жорданова форма матрицы		
	В результате работы студент научится вычислять жорданову форму матрицы; использовать жорданову форму для нахождения степеней матрицы.		
13	Евклидово пространство		
	В результате работы студент научится раскладывать вектора евклидова пространства по ортонормированному базису, ортогонализировать базис методом Грама-Шмидта, находить расстояние вектора до подпространства.		
14	Задачи линейного программирования		
	В результате работы студент научится решать простейшие задачи линейного программирования		
	графическим и симплекс-методом; строить двойственной задачи; находить решения двойственной задачи по решению исходной с помощью теорем двойственности.		
15	Проведение контрольной работы 2.		

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы	
1	Изучение лекционного материала. Подготовка к практическим занятиям.	
2	Подготовка к промежуточной аттестации.	
3	Подготовка к текущему контролю.	

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Татарников, О. В. Линейная алгебра: учебник для вузов / О. В. Татарников, А. С. Чуйко, В. Г. Шершнев; под общей редакцией О. В. Татарникова. — Москва: Издательство Юрайт, 2025. — 273 с. — (Высшее образование). — ISBN 978-5-534-19275-9. — Текст: электронный // Образовательная платформа Юрайт [сайт О.В. Татарников Учебник Юрайт, 2025	https://urait.ru/bcode/556226 (дата обращения: 12.03.2025). Текст: электронный.
2	Лубягина, Е. Н. Линейная алгебра: учебник для среднего профессионального образования / Е. Н. Лубягина, Е. М. Вечтомов. — 2-е изд. — Москва: Издательство Юрайт, 2025. — 150 с. —	https://urait.ru/bcode/565756 (дата обращения: 12.03.2025). Текст: электронный.

	(Профессиональное образование). — ISBN 978-5-534-12504-7. — Текст: электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/565756 (дата обращения:	
3	29.09.2025). Е.Н. Лубягина Учебник Юрайт, 2025 Малугин, В. А. Линейная алгебра: практический курс для экономистов: учебник и практикум для вузов / В. А. Малугин, Я. А. Рощина. — Москва: Издательство Юрайт, 2025. — 361 с. — (Высшее образование). — ISBN 978-5-534-19706-8. — Текст: электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/560578 (дата обращения: 29.09.2025). В.А. Малугин Учебник Юрайт, 2025	https://urait.ru/bcode/560578 (дата обращения: 12.03.2025). Текст: электронный.

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Информационный портал Научная электронная библиотека eLIBRARY.RU (www.elibrary.ru);

Научно-техническая библиотека РУТ (МИИТ) (http/library.miit.ru);

Электронно-библиотечная система издательства «Лань» – http://e.lanbook.com/;

Электронно-библиотечная система ibooks.ru – http://ibooks.ru/;

Электронно-библиотечная система «УМЦ» – http://www.umczdt.ru/;

Электронно-библиотечная система «Intermedia» – http://www.intermediapublishing.ru/;

Электронно-библиотечная система «BOOK.ru» – http://www.book.ru/;

Электронно-библиотечная система «ZNANIUM.COM» – http://www.znanium.com/

- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).
 - 1) Интернет-браузер (Yandex и др.).
 - 2) Microsoft Office.
- 8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Для проведения аудиторных занятий по дисциплине используется аудитория, оснащенная мультимедийным оборудованием: проектор, экран, персональный компьютер/ноутбук.

9. Форма промежуточной аттестации:

Экзамен в 1 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

начальник отдела Е.А. Козловцева

Согласовано:

Директор Д.В. Паринов

и.о. заведующего кафедрой ВМ А.М. Курзина

Председатель учебно-методической

комиссии Д.В. Паринов