МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 23.03.02 Наземные транспортно-технологические комплексы,

утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Макетирование

Направление подготовки: 23.03.02 Наземные транспортно-

технологические комплексы

Направленность (профиль): Транспортный и промышленный дизайн

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 1126187

Подписал: руководитель образовательной программы

Любавин Николай Александрович

Дата: 30.04.2025

1. Общие сведения о дисциплине (модуле).

Дисциплина направлена на изучение теоретических основ построения композиции, на технику выполнения эскиза, детальное изучения процесса проектирования, анализ основных признаков и свойств материалов применяемых в моделировании. Обучающиеся знакомятся с основами худо жественной грамоты, овладевают принципами проектирования и приемами исполнительского мастерства. Изучение дисциплины служит формированию практических навыков при создании дизайн-объектов, опыту использования в композиции различных материалов и техник, стимулирует творческое исполь зование полученных умений и практических навыков, развивает художественный вкус, фантазию, пространственное мышление и воображение.

Цель:

Формирование комплексных навыков проектирования дизайн-объектов через изучение теоретических основ композиции, техники выполнения эскизов и анализа материалов.

Задачи:

- 1. Изучить теоретические основы построения композиции и принципов проектирования.
 - 2. Освоить техники выполнения эскизов и создания проектных моделей.
- 3. Анализировать свойства и признаки материалов, используемых в моделировании.
- 4. Овладеть основами художественной грамоты и исполнительского мастерства.
- 5. Развивать навыки творческого применения различных материалов и техник в дизайне.
- 6. Создавать проектные работы, отражающие полученные знания и практические навыки.
- 7. Формировать критическое мышление и способность к самоанализу в процессе проектирования.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ОПК-5 - Способен принимать обоснованные технические решения, выбирать эффективные и безопасные технические средства и технологии при решении задач профессиональной деятельности;

ПК-5 - Способен производить эскизирование, макетирование, физическое моделирование, прототипирование продукции (изделия) и (или) элементов промышленного дизайна и транспорта.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- основы конструкции и дизайна транспортных средств
- аэродинамические принципы и их влияния на дизайн
- материалы и технологий, используемых в производстве транспортных средств

Уметь:

- создавать макеты и прототипы транспортных средств с учетом технических требований
- применять принципы эргономики и безопасности в дизайне транспортных средств
- использовать специализированное программное обеспечение для 3Dмоделирования и макетирования (например, CATIA, SolidWorks)

Владеть:

- навыками создания детализированных чертежей и спецификаций для производства
- техниками прототипирования и тестирования моделей транспортных средств
- навыками работы с инженерными и производственными командами для реализации дизайна
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 10 з.е. (360 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов		
	Всего	Семестр	

		№ 1	№ 2	№ 3	№4
Контактная работа при проведении учебных занятий (всего):	128	32	32	32	32
В том числе:					
Занятия семинарского типа	128	32	32	32	32

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 232 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

Не предусмотрено учебным планом

4.2. Занятия семинарского типа.

Лабораторные работы

№ п/п	Наименование лабораторных работ / краткое содержание			
1	Тема 1. Основы композиции в дизайне			
	Рассматриваемые вопросы:			
	- Элементы композиции: линия, форма, цвет и текстура.			
	- Влияние пропорций и баланса на восприятие дизайна.			
	- Приемы создания динамичной композиции: контраст и ритм.			
2	Тема 2. Техника выполнения эскизов			
	Рассматриваемые вопросы:			
	- Инструменты и материалы для выполнения эскизов.			
	- Основные техники прорисовки и штриховки для передачи объема и текстуры.			
	- Значение эскизов как средства визуализации идей.			
3	Тема 3. Материалы для моделирования			
	Рассматриваемые вопросы:			
	- Уникальные свойства различных материалов: дерево, пластик и металл.			
	- Критерии выбора подходящего материала для дизайн-объектов.			
	- Методы обработки материалов: резка, сгибание и склеивание.			

No				
п/п	Наименование лабораторных работ / краткое содержание			
4	Тема 4. Цвет и его влияние на восприятие дизайна			
	Рассматриваемые вопросы:			
	- Основы цветовой теории и взаимодействие цветов.			
	- Влияние цветовой палитры на эмоциональное восприятие дизайн-объекта.			
	- Эмоциональные отклики пользователей на цветовые решения.			
5	Тема 5. Проектирование функциональных объектов			
	Рассматриваемые вопросы:			
	- Роль эргономики в проектировании удобных объектов.			
	- Анализ потребностей целевой аудитории при проектировании.			
	- Прототипирование как способ выявления недостатков на ранних стадиях.			
6	Тема 6. Творческие техники в дизайне			
	Рассматриваемые вопросы:			
	- Техники креативного мышления: мозговой штурм и метод SCAMPER.			
	- Влияние вдохновения из искусства и природы на дизайнерский процесс.			
	- Применение навыков креативного мышления для решения дизайнерских задач.			
7	Тема 7. Материалы в макетировании: свойства и выбор для транспортного и			
	промышленного дизайна			
	Рассматриваемые вопросы:			
	- Изучение характеристик материалов: пластик, металл, композиты, древесина.			
	- Критерии выбора материалов для функциональных и эстетичных макетов.			
	- Примеры применения в транспортном и промышленном дизайне.			
8	Тема 8. Масштабирование и точность: принципы передачи габаритов в макетах			
	Рассматриваемые вопросы:			
	- Методы сохранения пропорций при уменьшении масштаба.			
	- Работа с чертежами и технической документацией для геометрической точности.			
	- Практические ошибки и их устранение в макетировании.			
9	Тема 9. Прототипирование: от эскиза к трёхмерной модели			
	Рассматриваемые вопросы:			
	- Этапы создания прототипов: ручная лепка, 3D-моделирование, сборка.			
	- Инструменты для быстрого прототипирования (3D-ручки, CNC-станки).			
	- Примеры перехода от 2D-эскиза к финальной модели.			
10	Тема 10. Эргономика и антропометрия в макетах транспортных средств			
	Рассматриваемые вопросы:			
	- Проектирование интерьеров с учётом антропометрических данных.			
	- Размещение элементов управления для минимизации усталости пользователя.			
	- Анализ удобства через макеты-симуляторы.			
11	Тема 11. Интеграция механических и электронных компонентов в промышленные			
	макеты			
	Рассматриваемые вопросы:			
	- Встраивание двигателей, датчиков и микросхем в макеты.			
	- Демонстрация работоспособности концептов (например, открывающиеся двери, подсветка).			
	- Баланс между функциональностью и визуальной простотой.			
12	Тема 12. Экодизайн и устойчивые материалы в макетировании			
_	Рассматриваемые вопросы:			
	- Использование перерабатываемых материалов (биопластики, картон).			
	- Принципы циклической экономики в дизайне.			
	- Кейсы «зелёных» проектов в транспортной отрасли.			
13	Тема 13. Цифровые инструменты: CAD, Rhino, Fusion 360 в транспортном дизайне			
-	Рассматриваемые вопросы:			
	1			

No	
п/п	Наименование лабораторных работ / краткое содержание
11/11	- Сравнение ПО для 3D-моделирования: интерфейс, точность, совместимость.
	- Подготовка файлов для ЧПУ-станков и 3D-печати.
	- Автоматизация расчётов нагрузок и напряжений.
14	Тема 14. Быстрое прототипирование: 3D-печать, лазерная резка, ЧПУ-фрезеровка
17	Рассматриваемые вопросы:
	- Выбор технологии под задачу (детализация vs. скорость).
	- Ограничения методов: точность, стоимость, размеры.
	- Примеры макетов для презентаций и тестирования.
15	Тема 15. Визуализация и презентация макетов: рендеринг, анимация, VR/AR
13	Рассматриваемые вопросы:
	- Создание интерактивных 3D-моделей для заказчиков.
	- Использование VR/AR для иммерсивной демонстрации.
	- Оптимизация рендеров под разные платформы (веб, мобильные устройства).
16	Тема 16. Кейсы: знаковые макеты в истории автомобильного и промышленного
10	дизайна
	Рассматриваемые вопросы:
	- Анализ макетов Tesla Cybertruck, концептов BMW Роль макетов в успехе продуктов Braun и Apple.
	- Роль макетов в успехе продуктов Бташт и Аррге Уроки из провальных проектов (например, неучтённые эргономические ошибки).
17	Тема 17. Эволюция макетирования: от гипсовых моделей к цифровым двойникам
1 /	
	Рассматриваемые вопросы:
	- Исторические методы: глина, гипс, дерево.
	- Цифровые двойники: преимущества и ограничения Будущее макетирования с учётом AI и Big Data.
18	Tema 18. User-Centered Design: макеты как инструмент тестирования
10	пользовательского опыта
	Рассматриваемые вопросы:
	- Методики тестирования с фокус-группами.
	- Анализ удобства интерфейсов и элементов управления.
	- Внесение изменений в дизайн на основе фидбека.
19	Тема 19. Междисциплинарная коллаборация: работа с инженерами и
-,	маркетологами
	Рассматриваемые вопросы:
	- Согласование технических требований и эстетики.
	- Роль дизайнера в команде: коммуникация и компромиссы.
	- Примеры успешных коллабораций (например, автомобильные бренды и IT-компании).
20	Тема 20. Структурный анализ и испытания макетов на прочность и устойчивость
20	Рассматриваемые вопросы:
	- Тестирование на вибростендах и в аэродинамических трубах.
	- Материалы для усиления конструкции (карбон, алюминиевые сплавы).
	- Моделирование экстремальных условий в САД-программах.
21	Тема 21. Финишная обработка: покраска, текстурирование, детализация макетов
	Рассматриваемые вопросы:
	- Техники имитации поверхностей (хром, кожа, стекло).
	- Использование аэрографии и лаков для реализма.
	- Детализация как инструмент повышения визуальной ценности.
22	Тема 22. Умные материалы и адаптивные системы в промышленном дизайне
	Рассматриваемые вопросы:
	- Применение материалов с памятью формы.
	т температи

№ п/п	Наименование лабораторных работ / краткое содержание		
	- Интеграция сенсоров для адаптации к внешним условиям.		
	- Примеры: «умные» интерьеры автомобилей, саморегулирующиеся конструкции.		

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы	
1	Разработка презентации проекта.	
2	Подготовка к лабораторным занятиям.	
3	Работа с лекционным материалом, литературой, самостоятельное изучение.	
4	Подготовка к промежуточной аттестации.	
5	Подготовка к текущему контролю.	

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Веселова, Ю. В. Основы композиции: учебное	https://e.lanbook.com/book/404537
	пособие / Ю. В. Веселова, О. В. Береговая. —	
	Новосибирск : НГТУ, 2022. — 90 с. — ISBN 978-	
	5-7782-4836-6	
2	Воронова, И. В. Проектирование: учебное	https://e.lanbook.com/book/174748
	пособие / И. В. Воронова. — Кемерово : КемГИК,	
	2020. — 168 c. — ISBN 978-5-8154-0516-5	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

eLIBRARY.RU (www.elibrary.ru);

Единая коллекция цифровых образовательных ресурсов (http://window, edu.ru);

Научно-техническая библиотека РУТ (МИИТ) (http://library.mitt.ru);

Поисковая система «Яндекс», для доступа к тематическим информационным ресурсам; Электронно-библиотечная система издательства «Лань» – http://e.lanbook.com /;

Электронно-библиотечная система ibooks.ru – http://ibooks.ru /;

Электронно-библиотечная система «УМЦ» – http://www.umczdt.ru/;

Электронно-библиотечная система «Intermedia» – http:// www.intermediapublishing.ru/;

Электронно-библиотечная система «BOOK.ru» – http://www.book.ru/; Электронно-библиотечная система «ZNANIUM.COM» – http://www.znanium.com/

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Программное обеспечение для выполнения практических заданий включает в себя программные продукты общего применения: операционная система Windows, Microsoft Office Powerpoint, Adope Photoshop, Adope Illustrator

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Лаборатория, макетная лаборатория, должна включать:

- 1. Ручные инструменты: Различные виды ножей, шлифовальные машины и другие инструменты для работы с макетами.
- 2. Материалы для макетирования: Различные типы пластика, дерева, металла и других материалов, используемых для создания макетов.
- 3. Оборудование для проверки эргономики: Используется для проверки удобства и комфорта использования разработанных автомобилей.
- 4. Специализированные рабочие столы и приспособления: Предназначены для удобства работы персонала лаборатории.
- 5. Обучающие материалы и руководства: Необходимы для обучения и развития навыков персонала лаборатории.
 - 9. Форма промежуточной аттестации:

Экзамен в 1 семестре.

Зачет во 2, 3, 4 семестрах.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

старший преподаватель Высшей

инженерной школы Н.А. Любавин

Согласовано:

Директор Б.В. Игольников

Руководитель образовательной

программы Н.А. Любавин

Председатель учебно-методической

д.В. Паринов