МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 25.03.03 Аэронавигация, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Математика

Направление подготовки: 25.03.03 Аэронавигация

Направленность (профиль): Организация бизнес-процессов на воздушном

транспорте

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 2672

Подписал: И.о. заведующего кафедрой Платонова Ольга

Алексеевна

Дата: 25.09.2024

1. Общие сведения о дисциплине (модуле).

Целями освоения дисциплины (модуля) «Математика» являются:

- приобретение базовых знаний по дисциплине;
- приобретение навыков работы с абстрактными понятиями;
- знакомство с прикладными задачами дисциплины.

Задачами освоения дисциплины (модуля) «Математика» являются:

- закладка математического фундамента для успешного освоения дисциплин естественно-научного и профессионального циклов;
- получение студентами основ теоретических знаний и прикладных навыков применения математических методов и моделей;
- подготовка к использованию этих методов для разработки и принятия эффективных организационных и управленческих решений;
- развитие логического мышления и повышение общего уровня культуры студентов.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ОПК-6 - Способен использовать основные законы математических и естественнонаучных дисциплин (модулей) в профессиональной деятельности, в том числе с использованием стандартных программных средств.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- основные понятия и теоремы дифференциального исчисления функций одной и нескольких переменных;
- основные понятия интегрального исчисления функций одной и нескольких переменных, важнейшие теоремы, методы интегрирования простейших интегралов;
 - основные понятия и теоремы случайных событий;
 - основные законы распределения случайных величин;
- математические методы обработки и анализа результатов статистических наблюдений (понятия обработки выборки, точечные оценки доверительных интервалов).

Уметь:

- интерпретировать основные понятия на простых модельных примерах: решать системы линейных алгебраических уравнений, вычислять пределы, вычислять производные, частные производные и дифференциалы функций, исследовать свойства функций и строить графики, находить наибольшие и наименьшие значения дифференцируемых функций, находить простейшие интегралы;
- анализировать результаты статистических наблюдений и делать на их основании количественные и качественные выводы.

Владеть:

- навыками решения основных инженерных задач;
- способностью производить самостоятельный выбор методов и способов решения.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 9 з.е. (324 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

	Количество часов			
Тип учебных занятий	Всего		Семестр	
	Beero	№ 1	№ 2	№3
Контактная работа при проведении учебных занятий (всего):	208	64	64	80
В том числе:				
Занятия лекционного типа	96	32	32	32
Занятия семинарского типа	112	32	32	48

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 116 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме

контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.

4. Содержание дисциплины (модуля).

4.1. Занятия лекционного типа.

No	Т.,
п/п	Тематика лекционных занятий / краткое содержание
1	Матрицы и определители матриц
	Рассматриваемые вопросы:
	- виды матриц, операции над матрицами, свойства операций над матрицами;
	- элементарные преобразования матриц;
	- определитель квадратной матрицы;
	- минор и алгебраическое дополнение элемента определителя;
	- свойства определителей;
	- обратная матрица и её свойства;
	- матричные уравнения;
	- ранг матрицы.
2	Системы линейных алгебраических уравнений (СЛАУ) (часть 1).
	Рассматриваемые вопросы:
	- решение СЛАУ методом Крамера;
	- решение СЛАУ методом обратной матрицы.
3	Системы линейных алгебраических уравнений (СЛАУ) (часть 2).
	Рассматриваемые вопросы:
	- решение СЛАУ методом Гаусса;
	- общее решение однородной СЛАУ.
4	Векторная алгебра (часть 1).
	Рассматриваемые вопросы:
	- векторы, действия над векторами;
	- векторные пространства V1, V2, V3;
	- линейная зависимость векторов;
	- критерии линейной зависимости двух, трех и четырех векторов;
	- базис на прямой, на плоскости и в пространстве;
	- координаты вектора в заданном базисе;
	- линейные операции над векторами в координатной форме;
	- угол между двумя векторами;
	- ортогональная проекция вектора на направление другого вектора и ее линейные свойства;
	- скалярное произведение двух векторов, его алгебраические свойства;
	- ортогональность векторов;
	- нахождение длины вектора и угла между векторами при помощи скалярного произведения;
	- ортонормированный базис в V3;
	- координаты вектора в ортонормированном базисе как проекции этого вектора на направление
	базисных векторов;
	- формулы для вычисления скалярного произведения, длины вектора, косинуса угла между
	векторами через координаты векторов в ортонормированном базисе;
	- направляющие косинусы вектора, их свойство;
	- условие коллинеарности векторов в координатной форме; - ориентация базиса, правые и левые тройки векторов.
	- орисптация осонос, правые и левые тронки векторов.

№ п/п	Тематика лекционных занятий / краткое содержание
5	Векторная алгебра (часть 2).
	Рассматриваемые вопросы:
	- векторное произведение двух векторов, его геометрический и механический смысл; -
	алгебраические свойства векторного произведения;
	- вычисление векторного произведения в ортонормированном базисе; - смешанное произведение векторов, его геометрический смысл;
	- алгебраические свойства смешанного произведения;
	- вычисление смешанного произведения, - вычисление смешанного произведения в ортонормированном базисе;
	- условие компланарности трех векторов;
	- вычисление длины отрезка, площадей параллелограмма и треугольника, объемов параллелепипеда
	и тетраэдра.
6	Аналитическая геометрия. Прямая на плоскости.
	Рассматриваемые вопросы:
	- различные виды уравнения прямых;
	- взаимное расположение прямых;
	- расстояние от точки до прямой.
7	Аналитическая геометрия. Прямая и плоскость в пространстве.
,	Рассматриваемые вопросы:
	- различные виды уравнений прямых и плоскостей;
	- взаимное расположение прямых и плоскостей;
	- расстояние от точки до плоскости и до прямой.
8	Плоские кривые второго порядка.
0	Рассматриваемые вопросы:
	- эллипс, гипербола, парабола и их геометрические свойства;
	- эксцентриситет и директрисы;
	- канонические уравнения кривых второго порядка.
9	Теория пределов (часть 1).
	Рассматриваемые вопросы:
	- определения;
	- понятие функции и способы её задания;
	- числовые последовательности;
	- предел последовательности;
	- односторонние пределы.
10	Теория пределов (часть 2).
	Рассматриваемые вопросы:
	- предел монотонной последовательности;
	- теоремы о пределах;
	 первый и второй замечательный предел.
11	Приёмы раскрытия неопределённостей.
	Рассматриваемые вопросы:
	- бесконечно малые функции;
	- эквивалентность бесконечно малых функций;
	- приёмы раскрытия неопределённостей.
12	Непрерывность функции.
<u> </u>	Рассматриваемые вопросы:
	- определение предела функции;
	- изолированные точки разрыва и их классификация.
	- непрерывные функции; - основные теоремы о непрерывных функциях;

No	
п/п	Тематика лекционных занятий / краткое содержание
13	Производные и дифференциалы функции (часть 1).
	Рассматриваемые вопросы:
	- понятие производной;
	- производная функции;
	- правила вычисления производных;
	- производная сложной функции;
	- логарифмическая производная;
	- производная показательно-степенной функции;
	- производная неявной функции;
	- дифференцирование функции заданной в параметрической форме;
1.4	- дифференциал функции.
14	Производные и дифференциалы функции (часть 2).
	Рассматриваемые вопросы:
	- производные высших порядков.
	- дифференциалы высших порядков.
1 ~	- теорема о функциях.
15	Производные и дифференциалы функции (часть 3).
	Рассматриваемые вопросы:
	- правило Лопиталя;
	- формула Тейлора;
1.0	- экстремум и интервалы монотонности функции.
16	Производные и дифференциалы функции (часть 4).
	Рассматриваемые вопросы:
	- исследование поведения функций с помощью производных;
	- выпуклость, вогнутость, точки перегиба;
	- асимптоты и общая схема исследования функции исследование поведения функций с помощью производных.
17	Неопределенный интеграл (часть 1).
1 /	
	Рассматриваемые вопросы:
	- определения первообразной функции и неопределенного интеграла; - основные свойства неопределенного интеграла;
	- таблица основных интегралов;
	- непосредственное интегралов;
	- метод подстановки;
	- метод интегрирования по частям.
18	Неопределенный интеграл (часть 2).
	Рассматриваемые вопросы:
	- разложение рациональной функции на элементарные дроби;
	- интегрирование рациональных дробей.
19	Неопределенный интеграл (часть 3).
	Рассматриваемые вопросы:
	- интегрирование иррациональных функций;
	- интегрирование дифференциальных биномов.
20	Неопределенный интеграл (часть 4).
	Рассматриваемые вопросы:
	- интегрирование тригонометрических функций.
21	Определенный интеграл.
41	Рассматриваемые вопросы:
	- задачи, приводящие к неопределенному интегралу;
	- определенный интеграл как предел интегральных сумм;
	I ''

No	
п/п	Тематика лекционных занятий / краткое содержание
	- теорема об интегрируемости кусочно-непрерывных функций;
	- геометрическая интерпретация определенного интеграла;
	- основные свойства определенного интеграла;
	- теоремы об оценке и о среднем значении;
	- определенный интеграл с переменным верхним пределом и теорема о его производной;
	- формула Ньютона-Лейбница;
	- вычисление определенных интегралов подстановкой и по частям.
22	Приложение определенного интеграла.
	Рассматриваемые вопросы:
	- вычисление площадей плоских фигур, ограниченных кривыми, заданными в декартовых
	координатах, параметрических и в полярных координатах;
	- вычисление объемов тел по площадям поперечных сечений и объемов тел вращения;
	-вычисление длины дуги кривой и площади поверхности вращения.
23	Несобственный интеграл.
	Рассматриваемые вопросы:
	- несобственные интегралы по бесконечному промежутку (1-го рода);
	- несобственные интегралы от неограниченных функций на отрезке (2-го рода);
	- признаки сходимости несобственных интегралов;
	- абсолютная и условная сходимости;
	- несобственные интегралы с несколькими особенностями.
24	Функция нескольких переменных (часть 1).
	Рассматриваемые вопросы:
	- функция нескольких переменных (ФНП);
	- график ФНП;
	- примеры ФНП и их геометрическое представление;
	- линии (поверхности) уровня;
	- окрестности, открытые, замкнутые и ограниченные множества;
	- связные множества, области;
	- предел ФНП; - бесконечно малые и бесконечно большие ФНП;
	- непрерывность ФНП в точке, на множестве;
	- свойства ФНП, непрерывной на ограниченном замкнутом множестве.
25	Функция нескольких переменных (часть 2).
23	
	Рассматриваемые вопросы: - частные производные ФНП и их геометрическая интерпретация для n= 2;
	- частные производные ФПП и их геометрическая интерпретация для п— 2, - дифференцируемые ФНП;
	- необходимые и достаточные условия дифференцируемости;
	- полный дифференциал;
	- восстановление функции по ее полному дифференциалу;
	- дифференцируемость сложной функции;
	- частная и полная производные ФНП;
	- инвариантность формы первого дифференциала.
26	Функция нескольких переменных (часть 3).
	Рассматриваемые вопросы:
	- частные производные и дифференциалы высших порядков;
	- матрица Гессе;
	- теорема о независимости смешанных частных производных от порядка дифференцирования;
	- применение дифференциала ФНП к приближенным вычислениям;
	- формула Тейлора для функции нескольких переменных;
	- неявно заданные функции;
	- теорема о неявной функции.

№	
п/п	Тематика лекционных занятий / краткое содержание
27	Функция нескольких переменных (часть 4).
	Рассматриваемые вопросы:
	-производная ФНП по направлению;
	-градиент функции и его свойства;
	-уравнения касательной и нормали к линии уровня функции двух переменных;
	-касательная плоскость и нормаль к поверхности.
28	Функция нескольких переменных (часть 5).
	Рассматриваемые вопросы:
	- экстремум ФНП;
	- необходимые и достаточные условия экстремума ФНП;
	- частный случай — функция двух переменных;
	- условный экстремум функции двух переменных;
	- функция Лагранжа;
	- необходимые и достаточные условия условного экстремума;
	- нахождение наибольшего и наименьшего значений функции двух переменных в замкнутой
	области.
29	Двойной интеграл (часть 1).
	Рассматриваемые вопросы:
	- понятие двойного интеграла, свойства;
	- вычисление двойного интеграла;
	- расстановка пределов интегрирования;
	- двойные интегралы в полярных координатах;
	- приложение двойного интеграла.
30	Двойной интеграл (часть 2).
	Рассматриваемые вопросы:
	- двойные интегралы в полярных координатах;
	- приложение двойного интеграла.
31	Криволинейные интегралы (часть 1).
	Рассматриваемые вопросы:
	- определение, вычисление, свойства и применение криволинейного интеграла первого рода;
	- задача определения работы переменной силы на криволинейном пути;
	- определение, свойства и вычисление криволинейного интеграла второго рода.
32	Криволинейные интегралы (часть 2).
	Рассматриваемые вопросы:
	- формула Грина для односвязных областей;
	- условия независимости криволинейного интеграла от пути интегрирования;
	- вычисление криволинейного интеграла от полного дифференциала;
	- формула Ньютона-Лейбница;
	- нахождение функции по ее полному дифференциалу с помощью криволинейного интеграла.
33	Дифференциальные уравнения (часть 1).
	Рассматриваемые вопросы:
	- общие сведения о дифференциальных уравнениях (основные понятия; задачи, приводящие к
	понятию диф. уравнений);
	- дифференциальные уравнения с разделяющими переменными;
	- однородные дифференциальные уравнения;
	- линейные дифференциальные уравнения;
	- уравнение Бернулли;
	- уравнения в полных дифференциалах, интегрирующий множитель.
34	Дифференциальные уравнения (часть 2).
	Рассматриваемые вопросы:

№	
п/п	Тематика лекционных занятий / краткое содержание
	- особые точки и особые решения ОДУ первого порядка;
	- уравнения, не разрешенные относительно производной;
	- метод введения параметра;
	- уравнения Лагранжа и Клеро;
	- формулировка теоремы Коши;
	- дискриминантная кривая;
	- задача Коши;
	- формулировка теоремы Коши для уравнений высшего порядка; - некоторые типы уравнений, допускающих понижение порядка.
35	
33	Дифференциальные уравнения (часть 3).
	Рассматриваемые вопросы:
	- линейные дифференциальные уравнения высших порядков;
	- свойства линейного дифференциального оператора; - свойства решений линейного уравнения;
	- линейно зависимые и независимые системы функций;
	- определитель Вронского, его свойства для системы решений линейного;
	- однородного уравнения порядка п и для произвольной системы функций;
	- фундаментальная система решений (ФСР) однородного линейного уравнения;
	-теорема о структуре общего решения линейного однородного уравнения;
	- общее решение линейного неоднородного уравнения;
	- теорема о его структуре.
36	Дифференциальные уравнения (часть 4).
	Рассматриваемые вопросы:
	- линейные дифференциальные уравнения с постоянными коэффициентами;
	- построение ФСР в случае различных корней характеристического уравнения;
	- случай кратных корней характеристического уравнения;
	- структура частного решения неоднородного линейного дифференциального уравнения с
	постоянными коэффициентами и квазимногочленом в правой части;
	-метод Лагранжа вариации постоянных.
37	Системы дифференциальных уравнений
	Рассматриваемые вопросы:
	- нормальные системы дифференциальных уравнений;
	- задача Коши и теорема Коши существования и единственности решения (без док-ва);
	- сведение системы к одному уравнению порядка n.
38	Числовые и функциональные ряды (часть 1).
	Рассматриваемые вопросы:
	- основные понятия;
	- ряд геометрической прогрессии;
	- необходимый признак сходимости числового ряда;
20	- гармонический ряд.
39	Числовые и функциональные ряды (часть 2).
	Рассматриваемые вопросы:
	- признаки сходимости знакоположительных рядов;
	- признаки сравнения;
	- признак Даламбера;
40	- признак Коши (радикальный, интегральный).
40	Числовые и функциональные ряды (Часть 3).
	Рассматриваемые вопросы:
	- признаки сходимости знакопеременных рядов: признаки Лейбница, Абеля и Дирихле;
	- условная и абсолютная сходимость знакопеременного ряда;
	- функциональные ряды;

$N_{\underline{0}}$	
п/п	Тематика лекционных занятий / краткое содержание
	- область сходимости;
	- равномерная сходимость, признак Вейерштрасса;
	- теоремы о непрерывности суммы, почленном интегрировании и дифференцировании равномерно
	сходящихся рядов.
41	Числовые и функциональные ряды (часть 4).
	Рассматриваемые вопросы:
	-степенные ряды;
	-теоремы Абеля;
	-радиус сходимости и формула для его вычисления;
	-теоремы о почленном интегрировании и дифференцировании степенных рядов.
42	Числовые и функциональные ряды (часть 5).
	Рассматриваемые вопросы:
	- ряд Тейлора;
	- критерий сходимости ряда Тейлора к исходной функции;
	- ряды Маклорена;
	- разложение функций в степенные ряды;
	- разложение основных элементарных функций;
	- методы вывода разложений сложных функций.
43	Применение числовых и функциональных рядов.
	Рассматриваемые вопросы:
	- приближенное вычисление значений функций;
	- приближенное вычисление определенных интегралов.
44	Числовые и функциональные ряды.
	Рассматриваемые вопросы:
	- ряды Фурье;
	- разложение функции в ряд Фурье;
	- интеграл Фурье;
	- преобразование Фурье.
45	Случайные события (часть 1).
	Рассматриваемые вопросы:
	- понятие случайного события;
	- пространство элементарных событий;
	- составные события, действия над событиями;
	- алгебра событий как одна из интерпретаций алгебры Буля;
	- диаграммы Венна;
	- классическое, статистическое и геометрическое определение вероятности;
	- понятие об аксиоматическом определении вероятности.
46	Случайные события (часть 2).
	Рассматриваемые вопросы:
	- теоремы сложения и умножения вероятностей;
	- условная вероятность;
	- формула полной вероятности и формула Байеса;
	- формула Бернулли;
	- локальная и интегральная теоремы Лапласа.
47	Случайные события (часть 3).
	Рассматриваемые вопросы:
	- отклонение относительной частоты от постоянной вероятности в независимых испытаниях;
	- понятие об одномерной случайной величине;
	- дискретные случайные величины.

№ п/п	Тематика лекционных занятий / краткое содержание
48	Случайные величины (часть 4).
	Рассматриваемые вопросы:
	- закон распределения дискретной случайной величины;
	- функция распределения и ее свойства;
	- непрерывные случайные величины;
	- функция плотности распределения и ее свойства;
	- математическое ожидание, дисперсия и среднее квадратичное отклонение непрерывной случайной
	величины;
	- основные законы распределения.

4.2. Занятия семинарского типа.

Практические занятия

	практические запития
№ п/п	Тематика практических занятий/краткое содержание
1	Матрицы и определители матриц (часть 1).
1	В результате работы студент приобретет умения: выполнение линейных операций над матрицами,
	вычиления определителей второго и третьего порядков.
2	Матрицы и определители матриц (часть 2).
	В результате работы студент приобретет умения: нахождение обратной матрицы, нахождение ранга
	матрицы, решение матричных уравнений.
3	Системы линейных алгебраических уравнений (СЛАУ).
	В результате работы студент приобретет навыки решения СЛАУ методом Гаусса, Крамера.
4	Векторная алгебра (часть 1).
	В результате работы студент приобретет умения применения скалярного, векторного, смешанного
	произведения векторов к решению задач.
5	Аналитическая геометрия (часть 1).
	В результате работы студент будет ознакомлен со способами задание прямой на плоскости
	различными способами, взаимное расположение двух прямых на плоскости, приобретет умения
	вычисление расстояния от точки до прямой.
6	Прямая и плоскость в пространстве (часть 2).
	В результате работы студент будет ознакомлен со способами задания прямой в пространстве,
	взаимным расположение прямой и плоскости, приобретет навыки задания уравнения плоскости в
	пространстве.
7	Плоские кривые второго порядка.
	В результате работы студент приобретет умения построение эллипса, гиперболы, параболы,
	нахождение эксцентриситета и директрисы.
8	Теория пределов (часть 1).
	В результате работы студент приобретет умения построение построение графиков фукций.
9	Теория пределов (часть 2).
	В результате работы студент приобретет умения: раскрытие неопределенностей в пределах,
	вычисление первого и второго замечательных пределов.
10	Приёмы раскрытия неопределённостей (часть 3).
	В результате работы студент приобретет умения использования основных эквивалентностей при
	вычислении пределов.
11	Непрерывность функции (часть 4).
	В результате работы студент приобретет умения исследование функции на непрерывность.

No	
п/п	Тематика практических занятий/краткое содержание
12	Производные и дифференциалы функции (часть 1).
	В результате работы студент приобретет навыки вычисление производных.
13	Производные и дифференциалы функции (часть 2).
	В результате работы студент приобретет умения: вычисления производной степенно-показательной
	функции, вычисления производной функции, заданной параметрически, вычисление производных
	высших порядков, вычисления дифференциалов высших порядков.
14	Производные и дифференциалы функции (часть 3).
	В результате работы студент приобретет навыки использование правила Лопиталя для вычисления
	пределов.
15	Производные и дифференциалы функции (часть 4).
	В результате работы студент приобретет умения исследования функции на монотонность,
	исследование функции на выпуклость и вогнутость.
16	Производные и дифференциалы функции (часть 5).
	В результате работы студент приобретет умения: исследование функции, построение графика
	функции по исследованию.
17	Неопределенный интеграл (часть 1).
	В результате работы студент приобретет умения вычисления неопределенных интегралв с помощью
1.0	таблицы интегралов.
18	Неопределенный интеграл (часть 2).
	В результате работы студент приобретет умения: вычисление неопределенного интеграла с
1.0	помощью замены переменной, интегрирование по частям.
19	Неопределенный интеграл (часть 3).
• •	В результате работы студент приобретет умения интегрирования рациональных дробей.
20	Неопределенный интеграл (часть 4).
	В результате работы студент приобретет умения интегрирование иррациональных функций.
21	Неопределенный интеграл (часть 5).
	В результате работы студент приобретет умения интегрирования тригонометрические функции.
22	Определенный интеграл (часть 1).
	В результате работы студент приобретет умения: вычисление определенного интеграла, замена
	переменной в определенном интеграле, вычисление площадей плоских фигур.
23	Понятие несобственного интеграла (часть 1).
	В результате работы студент приобретет умения вычисления несобственных интегралов.
24	Производная функции нескольких переменных (часть 1).
	В результате работы студент приобретет навыки вычисление частных производных функции двух
	переменных.
25	Производная функции нескольких переменных (часть 2).
	В результате работы студент приобретет умения применения полного дифференциала к
26	приближенным вычислениям.
26	Производная функции нескольких переменных (часть 3).
	В результате работы студент приобретет умения: вычисление производной функции по
	направление, вычисления вектора градиента, нахождения уравнения касательной плоскости и нормали к поверхности.
27	
41	Производная функции нескольких переменных (часть 4). В результате работы студент приобретет умения нахождения экстремума функции двух
	переменных.
28	Кратные и криволинейные интегралы (часть 1)
20	В результате работы студент приобретет умения вычисления двойных интегралов, расстановки
	пределов интегрирования.
	Lit - Varior mirror bub openium.

No	
№	Тематика практических занятий/краткое содержание
п/п	
29	Кратные и криволинейные интегралы (часть 2).
	В результате работы студент приобретет умения вычисления двойных интегралов в полярных
20	координатах.
30	Кратные и криволинейные интегралы (часть 3).
21	В результате работы студент приобретет умения вычисления площади плоской фигуры.
31	Кратные и криволинейные интегралы (часть 4).
22	В результате работы студент приобретет умения вычисления криволинейного интеграла І рода.
32	Кратные и криволинейные интегралы (часть 5).
22	В результате работы студент приобретет умения вычисления криволинейного интеграла II рода.
33	Общие сведения о дифференциальных уравнениях (часть 1).
	В результате работы студент приобретет умения решения дифференциальных уравнений с
2.4	разделяющимися переменными.
34	Дифференциальные уравнения (часть 2).
	В результате работы студент приобретет умения решения дифференциальных уравнений первого порядка (однородные уравнения, линейные уравнения, уравнения Бернулли).
35	Дифференциальные уравнения (часть 3).
33	В результате работы студент приобретет умения решения дифференциальных уравнений второго
	порядка, допускающих понижение порядка.
36	Дифференциальные уравнения (часть 4).
30	В результате работы студент приобретет умения решения однородных дифференциальных
	уравнений втрого порядка с постоянными коэффициентами.
37	Дифференциальные уравнения (часть 5).
	В результате работы студент приобретет умения решения неоднородных дифференциаотных
	уравнений второго порядка с постоянными коэффициентами со специальной правой частью.
38	Дифференциальные уравнения (часть 6).
	В результате работы студент приобретет уознакомлен с метод вариации произвольных постоянных.
39	Дифференциальные уравнения (часть 7).
	В результате работы студент приобретет навыки решения дифференциальных уравнений разных
	типов.
40	Дифференциальные уравнения (часть 8).
	В результате работы студент приобретет умения решения систем дифференциальных уравнений.
41	Числовой ряды (часть 1).
	В результате работы студент приобретет умения: использования необходимого признака
	сходимости для исследования сходимости числовых рядов, использования обобщенного
	гармонический ряд для исследования сходимости числовых рядов, использования интегрального
40	признака для исследования сходимости числовых рядов.
42	Числовой ряды (часть 2).
	В результате работы студент приобретет умения исследование рядов на сходимость с помощью
43	признаков Даламбера, радикального признака Коши.
43	Числовой ряды (часть 3).
	В результате работы студент приобретет умения исследование рядов на абсолютну и условную сходимость.
44	Функциональные ряды (часть 4).
44	В результате работы студент приобретет умения вычисление области сходимости степенных рядов.
45	Разложение функции в степенные ряды (часть 5).
43	В результате работы студент приобретет умения разложения функций в степенные ряды.
46	Ряды Фурье (часть 6).
40	В результате работы студент приобретет умения разложения функций в ряды Фурье.
	результате расоты студент присоретет умения разложения функции в ряды Фурье.

No	Тематика практических занятий/краткое содержание		
Π/Π			
47	Приложение числовых и функциональных рядов (часть 7).		
	В результате работы студент приобретет умения приближенного вычисления значений функций,		
	приближенного вычисления определенных интегралов.		
48	Приложение числовых и функциональных рядов (часть 8).		
	В результате работы студент приобретет умения приближенного решения дифференциальных		
	уравнений.		
49	Случайные события (часть 1).		
	В результате работы студент приобретет умения решения задачана классическое определение		
	вероятностей.		
50	Случайные события (часть 2).		
	В результате работы студент приобретет умения решение задач с использованипе теорем сложения		
71	вероятностей и умножения вероятностей.		
51	Случайные события (часть 3).		
	В результате работы студент приобретет умения решение задач с использование формулы полной		
50	вероятности.		
52			
	В результате работы студент приобретет умения использования формулы Бернулли, формулы Пуассона, локальной и интегральной формул Муавра-Лапласа при решении задач.		
53			
33	Случайные величины (часть 5).		
	В результате работы студент приобретет умения построение закона распределения вероятностей дискретной случайной величины, будит ознакомлен биномиальным распределением,		
	распределением Пуассона, геометрическим распределением случайной величины.		
54	Случайные события (часть 6).		
	В результате работы студент приобретет умения вычисления математического ожидания,		
	дисперсии, среднего квадратического отклонения дискретных случайных величин.		
55	Случайные величины (часть 7).		
	В результате работы студент будет ознакомлен с непрерывные случайными величинами.		
	Приобретет умения нахождения функции распределения по известной плотности распределения.		
56	Случайные величины (часть 8).		
	В результате работы студент будет ознакомлен с основные законы распределения непрерывных		
	случайных величин. Приобретет умения вычисление математического ожидания, дисперсии,		
	среднего квадратического отклонения непрерывных случайных величин.		

4.3. Самостоятельная работа обучающихся.

№	Вид самостоятельной работы
1	Подготовка к практическим занятиям
2	Подготовка к промежуточной аттестации.
3	Подготовка к текущему контролю.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№	Библиографическое описание	Место доступа
п/п		

1	Ильин, В. А. Математический анализ в 2 ч. Часть 1 в 2	https://urait.ru/bcode/538112
	кн. Книга 1 : учебник для вузов / В. А. Ильин, В. А.	(дата обращения:
	Садовничий, Б. Х. Сендов. — 4-е изд., перераб. и доп.	25.09.2024). Текст:
	 — Москва : Издательство Юрайт, 2024. — 324 с. — 	электронный.
	(Высшее образование). — ISBN 978-5-534-07067-5.	
2	Высшая математика : учебное пособие для вузов / В. С.	https://urait.ru/bcode/468424
	Шипачев. — 8-е изд., перераб. и доп. — Москва:	(дата обращения:
	Издательство Юрайт, 2021. — 447 с. — (Высшее	26.01.2024). Текст:
	образование). — ISBN 978-5-534-12319-7.	электронный.
3	Садовничая, И. В. Математический анализ. Предел и	https://urait.ru/bcode/539821
	непрерывность функции одной переменной : учебное	(дата обращения:
	пособие для вузов / И. В. Садовничая, Т. Н. Фоменко;	25.09.2024). Текст:
	под общей редакцией В. А. Ильина. — 2-е изд., перераб.	электронный.
	и доп. — Москва : Издательство Юрайт, 2024. — 115 с.	
	— (Высшее образование). — ISBN 978-5-534-08473-3.	
4	Муратова, Т. В. Дифференциальные уравнения:	https://urait.ru/bcode/535915
	учебник и практикум для вузов / Т. В. Муратова. —	(дата обращения:
	Москва : Издательство Юрайт, 2024. — 435 с. —	25.09.2024). Текст:
	(Высшее образование). — ISBN 978-5-534-01456-3.	электронный.
5	Кремер, Н. Ш. Теория вероятностей и математическая	https://urait.ru/bcode/541918
	статистика: учебник и практикум для вузов / Н. Ш.	(дата обращения:
	Кремер. — 5-е изд., перераб. и доп. — Москва:	25.09.2024). Текст:
	Издательство Юрайт, 2024. — 538 с. — (Высшее	электронный.
	образование). — ISBN 978-5-534-10004-4.	
6	Математический анализ. Сборник заданий: учебное	https://urait.ru/bcode/540065
	пособие для вузов / В. В. Логинова [и др.]; под общей	(дата обращения:
	редакцией Е. Г. Плотниковой. — 2-е изд., испр. и доп.	25.09.2024). Текст:
	 — Москва : Издательство Юрайт, 2024. — 206 с. — 	электронный.
	(Высшее образование). — ISBN 978-5-534-11516-1.	
		•

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Научно-техническая библиотека РУТ (МИИТ) (http://library.miit.ru) Библиотека образовательной платформы «Юрайт» (https://urait.ru)

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Учебный процесс по дисциплине обеспечивается программами лицензионнго ПО: Microsoft Office, Microsoft Windows, Yandex свободно распространяемое ПО.

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Для проведения аудиторных занятий по дисциплине используется аудитория, оснащенная мультимедийным оборудованием: доска, проектор, экран, персональный компьютер/ноутбук.

9. Форма промежуточной аттестации:

Зачет в 1, 2 семестрах.

Экзамен в 3 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

заведующий кафедрой, доцент, к.н. кафедры «Высшая математика»

О.А. Платонова

Согласовано:

Проректор Я.М. Далингер

и.о. заведующего кафедрой ВМ О.А. Платонова

Председатель учебно-методической

комиссии С.А. Кудряков