МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 10.03.01 Информационная безопасность, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Математическая логика и теория алгоритмов

Направление подготовки: 10.03.01 Информационная безопасность

Направленность (профиль): Безопасность компьютерных систем

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 5665

Подписал: заведующий кафедрой Нутович Вероника

Евгеньевна

Дата: 24.05.2022

1. Общие сведения о дисциплине (модуле).

Целью освоения дисциплины (модуля) являются:

- ознакомление с основными понятиями и методами математической логики и теории алгоритмов;
- формирование систематизированных знаний в области математической логики:
- формирование представлений о проблемах оснований математики и роли математической логики в их решении;
 - развитие логического мышления, логической культуры.

Задачами дисциплины (модуля) являются:

- сбор и анализ исходных данных для проектирования систем защиты информации, определение требований, сравнительный анализ подсистем по показателям информационной безопасности;
- сбор, изучение научно-технической информации, отечественного и зарубежного опыта по тематике исследования.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ОПК-3 - Способен использовать необходимые математические методы для решения задач профессиональной деятельности.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- основы теории доказательств, понятие сложности алгоритма, алгоритмы поиска кратчайших путей на графах.

Уметь:

- выполнять тождественные преобразования формул логики высказываний и логики предикатов;
 - проверять и доказывать логическое следование;
 - оценивать сложность алгоритмов.

Владеть:

- навыками формализации и интерпретации высказываний;
- вычислениями логического значения высказывания;
- проверками логического следования;
- построениями доказательств (выводов) в исчислении высказываний.

- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 3 з.е. (108 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
тип учесных занятии		Семестр 1
Контактная работа при проведении учебных занятий (всего):	50	50
В том числе:		
Занятия лекционного типа	34	34
Занятия семинарского типа	16	16

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 58 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

№ п/п	Тематика лекционных занятий / краткое содержание	
1	Логика и исчисление высказываний	
	Рассматриваемые вопросы:	
	- формализация языка. Высказывания, истинностные значения высказываний;	
	- формулы в исчислении высказываний. Эквивалентность формул в ИВ;	

No			
п/п	Тематика лекционных занятий / краткое содержание		
	- логическое следствие в ИВ. Рассуждение. Правильные (логичные) рассуждения.		
2	Логика и исчисление предикатов		
	Рассматриваемые вопросы:		
	- предикаты. Логические операции над предикатами. Кванторы;		
	- формулы в ИП. Свободные и связанные переменные;		
	- интерпретация формул в ИП. Эквивалентность формул в ИП;		
	- логическое следствие в ИП. Рассуждение. Правильные (логичные) рассуждения.		
3	Элементы теории графов		
	Рассматриваемые вопросы:		
	- понятие графа. Способы представления графов. Ориентированные и неориентированные графы;		
	- взвешенные графы. Пути и циклы в графах;		
	- постановки задач о кратчайших путях, задача коммивояжера.		
4	Теория алгоритмов		
	Рассматриваемые вопросы:		
	- понятие задачи: массовая и индивидуальная. Свойства алгоритма. Кодирование задачи.		
	Необходимость формализации понятия алгоритма;		
	- машина Тьюринга, тезис Тьюринга;		
	- универсальная машина Тьюринга. Самоприменимая машина Тьюринга. Алгоритмически		
	неразрешимые проблемы;		
	- временная сложность алгоритма: время работы алгоритма над входом, сложность алгоритма,		
	сложность задачи. Полиномиальные алгоритмы. Класс задач Р;		
	- сложность некоторых вычислительных алгоритмов;		
	- понятие недетерминированного алгоритма. Класс задач NP. Примеры NP-полных задач;		
	- типы алгоритмов: переборные, жадные. Эвристики и приближенные алгоритмы.		
5	Формальные аксиоматические теории		
	Рассматриваемые вопросы:		
	- понятие формальной аксиоматической теории (ФАТ);		
	- основные свойства ФАТ;		
	- формализованное исчисление высказываний (ФИВ);		
	- понятие вывода (доказательства) формулы ФИВ;		
	- теорема о дедукции;		
	- свойства ФИВ;		
	- формализованное исчисление предикатов (ФИП);		
	- свойства ФИП;		
	- формальная арифметика (ФА);		
	- теоремы Гёделя о неполноте ФА; - теорема Чёрча о неразрешимости ФА;		
	- теорема Тарского об истинности.		
6	Вычислимые функции		
	Рассматриваемые вопросы:		
	- понятие алгоритмически вычислимой функции;		
	- аксиоматическая теория вычислимых функций;		
	- понятие функции, вычислимой по Чёрчу;		
	- тезис Чёрча.		
7	Машина Тьюринга		
_ ′	Рассматриваемые вопросы:		
	- понятие машины Тьюринга;		
	- понятие функции, вычислимой по Тьюрингу;		
	- тезис Тьюринга;		
	- теорема об эквивалентности множества функций, вычислимых по Тьюрингу, и множества функций,		
	1 1 2 2 4 4 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

№ п/п	Тематика лекционных занятий / краткое содержание
	вычислимых по Чёрчу.
8	Основы теории сложности алгоритмов
	Рассматриваемые вопросы:
	- понятие массовой проблемы;
	- теорема о существовании функции, невычислимой по Тьюрингу;
	- теорема Райса;
	- временная функция сложности алгоритма;
	- шкала асимптотической сложности алгоритмов;
	- сложностные классы массовых проблем;
	- понятия практически решаемой и труднорешаемой массовой проблемы;
	- классы массовых проблем Р и NP.

4.2. Занятия семинарского типа.

Практические занятия

№ п/п	Тематика практических занятий/краткое содержание		
1	Формулы в исчислении высказываний. Эквивалентность формул в ИВ		
	В результате выполнения практического задания студент получает навык выполнять эквивалентные преобразования формул в ИВ.		
2	Логическое следствие в ИВ. Рассуждение. Правильные (логичные) рассуждения		
	В результате выполнения практического задания студент получает навык проверять логическое следование в ИВ.		
3	Предикаты. Формулы в ИП. Интерпретация формул в ИП. Алгебра предикатов и		
	алгебра множеств		
	В результате выполнения практического задания студент получает навык преобразования формул алгебры предикатов.		
4	Логическое следствие в ИП. Рассуждение. Правильные (логичные) рассуждения		
	В результате выполнения практического задания студент получает навык проверять логическое следование в ИП.		
5	Способы представления графов. Пути и циклы в графах		
	В результате выполнения практического задания студент получает навык задавать графы, строить		
	пути и циклы в графах, определять типы графов.		
6	Оценка сложности фрагментов программ		
	В результате выполнения практического задания студент получает навык оценки сложности		
	программ.		

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
	Изучение дополнительной литературы
2	Подготовка к практическим занятиям
3	Подготовка к промежуточной аттестации.
4	Подготовка к текущему контролю.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

1.0		
No	Библиографическое описание	Место доступа
п/п	1 1	, , ,
1	Гаврилов Г.П., Сапоженко А.А. Сборник задач по	НТБ МИИТ
	дискретной математике. Наука, 1977 368 с. Сборник	
2	Новиков Ф.А. Дискретная математика для программистов.	НТБ МИИТ
	Питер, 2004 383 с.; - ISBN 978-5-91180-759-7 Учебное	
	пособие	
3	Кристофидес Н. Теория графов. Алгоритмический подход.	НТБ МИИт
	Мир, 1978 432.	
4	Харари Ф. Теория графов. Мир, 2003 300 с.;- ISBN 5-354-	НТБ МИИТ
	00301-6: 2000 Учебное пособие	
5	Хаггарти Р. Дискретная математика для программистов.	НТБ МИИТ
	Техносфера, 2012 399 с.;- ISBN 978-5-94836-303-5	
	Учебное пособие	
6	Игошин В.И. Математическая логика и теория алгоритмов.	НТБ МИИТ
	Академия, 2010 446 с.; - ISBN 978-5-7695-7045-2 Учебное	
	пособие	
7	Игошин В.И. Задачи и упражнения по математической	НТБ БИИТ
	логике и теории алгоритмов. Академия, 2007 302; - ISBN	
	5-7695-3728-0 Учебное пособие	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Официальный сайт РУТ (МИИТ) (https://www.miit.ru/).

Научно-техническая библиотека РУТ (МИИТ) (http:/library.miit.ru).

Образовательная платформа «Юрайт» (https://urait.ru/).

Электронно-библиотечная система издательства «Лань» (https://e.lanbook.com/).

Электронно-библиотечная система Znanium (https://znanium.com/)

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Microsoft Internet Explorer (или аналог)

Операционная система Microsoft Windows (или аналог)

Microsoft Office (или аналог)

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебные аудитории для проведения учебных занятий, оснащенные компьютерной техникой и наборами демонстрационного оборудования.

9. Форма промежуточной аттестации:

Экзамен в 4 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, доцент, к.н. кафедры «Цифровые технологии управления транспортными процессами»

А.П. Иванова

Согласовано:

Заведующий кафедрой ВССиИБ

Б.В. Желенков

Заведующий кафедрой ЦТУТП

В.Е. Нутович

Председатель учебно-методической

комиссии Н.А.Клычева