МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 01.03.02 Прикладная математика и информатика, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Математическая логика и теория алгоритмов

Направление подготовки: 01.03.02 Прикладная математика и

информатика

Направленность (профиль): Математическое моделирование и системный

анализ

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 5665

Подписал: заведующий кафедрой Нутович Вероника

Евгеньевна

Дата: 10.04.2025

1. Общие сведения о дисциплине (модуле).

Целью освоения дисциплины (модуля) являются:

- овладение базовыми понятиями и методологическими основами математической логики и теории алгоритмов;
- формирование и развитие навыков решения профессиональных задач на основе методов математической логики и теории алгоритмов.

Задачами дисциплины (модуля) являются:

- знакомство студентов с основными задачами математической логики и теории алгоритмов и методами их решения;
- формирование и развитие компетенций в сфере использования методов математической логики и теории алгоритмов для решения профессиональных задач.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ПК-4 - Уметь ставить цели создания системы, разрабатывать концепцию системы и требования к ней, выполнять декомпозицию требований к системе.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- основные понятия и теоретические положения математической логики, необходимые для концептуального моделирования систем;
- основные методы математической логики и теории алгоритмов, используемые при разработке и декомпозиции требований к системе.

Уметь:

- разрабатывать и анализировать логические модели объектов профессиональной деятельности;
- использовать методы математической логики и теории алгоритмов для решения практических задач в области системного анализа (в объеме курса).

Владеть:

- навыками анализа и синтеза результатов профессиональных исследований на основе методов математической логики и теории алгоритмов;
- навыками формального описания и интерпретации результатов решения практических задач в области системного анализа (в объеме курса).

- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 4 з.е. (144 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
тип учесных занятии		Семестр №2
Контактная работа при проведении учебных занятий (всего):		32
В том числе:		
Занятия лекционного типа	16	16
Занятия семинарского типа	16	16

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 112 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

№ 1/π	Тематика лекционных занятий / краткое содержание	
1	Язык логики высказываний. Теоремы логики высказываний	
	Рассматриваемые вопросы:	
	- понятие формальной логики;	
	- логические парадоксы;	

No		
п/п	Тематика лекционных занятий / краткое содержание	
11/11	- формализация утверждений;	
	- язык логики высказываний;	
	- логическое значение высказывания;	
	- погическое значение высказывания, - теорема о вычислении логического значения высказываний;	
	- георема о вычислении логического значения высказывании, - алгебра высказываний;	
	- понятие логического следования;	
	- теорема о признаке логического следования;	
	- теорема о признаке логической равносильности.	
2	Понятия и формулы логики предикатов	
	Рассматриваемые вопросы:	
	- понятие предиката в логике;	
	- множество истинности предиката;	
	- кванторные операции над предикатами;	
	- формулы логики предикатов.	
3	Законы и теоремы логики предикатов	
	Рассматриваемые вопросы:	
	- законы логики предикатов;	
	- теорема о приведенной форме;	
	- теорема о предваренной нормальной форме.	
4	Формальные аксиоматические теории	
	Рассматриваемые вопросы:	
	- понятие формальной аксиоматической теории (ФАТ);	
	- основные свойства ФАТ.	
	* (*IID) *	
	Формализованное исчисление высказываний (ФИВ). Формализованное исчисление	
	предикатов (ФИП)	
	Рассматриваемые вопросы:	
	- формализованное исчисление высказываний (ФИВ);	
	- понятие вывода (доказательства) формулы ФИВ;	
	- теорема о дедукции;	
	- свойства ФИВ;	
	- формализованное исчисление предикатов (ФИП);	
	- свойства ФИП.	
6	Формальная арифметика (ФА)	
	Рассматриваемые вопросы:	
	- формальная арифметика (ФА);	
	- теоремы Гёделя о неполноте ФА;	
	- теорема Чёрча о неразрешимости ФА;	
	- теорема Тарского об истинности.	
7	Вычислимые функции. Машина Тьюринга	
	Рассматриваемые вопросы:	
	- понятие алгоритмически вычислимой функции;	
	- аксиоматическая теория вычислимых функций;	
	- понятие функции, вычислимой по Чёрчу;	
	- тезис Чёрча;	
	- понятие машины Тьюринга;	
	1 v m	
	- понятие функции, вычислимой по Тьюрингу; - тезис Тьюринга;	

№ п/п	Тематика лекционных занятий / краткое содержание	
	- теорема об эквивалентности множества функций, вычислимых по Тьюрингу, и множества	
	функций, вычислимых по Чёрчу.	
8	Основы теории сложности алгоритмов	
	Рассматриваемые вопросы:	
	 - понятие массовой проблемы; - теорема о существовании функции, невычислимой по Тьюрингу; - теорема Райса; - временная функция сложности алгоритма; 	
	- шкала асимптотической сложности алгоритмов;	
	- сложностные классы массовых проблем;	
	- понятия практически решаемой и труднорешаемой массовой проблемы;	
	- классы массовых проблем Р и NP.	

4.2. Занятия семинарского типа.

Практические занятия

No	Тематика практических занятий/краткое содержание	
Π/Π		
1	Язык логики высказываний	
	В результате работы на практическом занятии студент получает навык:	
	- формализовывать утверждения на языке логики высказываний;	
	- интерпретировать формулы логики высказываний;	
	- строить таблицу истинности формулы логики высказываний;	
	- вычислять логическое значение высказывания;	
	- классифицировать высказывания.	
2	Логическое следование	
	В результате работы на практическом занятии студент получает навык:	
	- выявлять логическое следование;	
	- выполнять тождественные преобразования формул логики высказываний.	
3	Логика предикатов	
	В результате работы на практическом занятии студент получает навык:	
	- формализовывать утверждения на языке логики предикатов;	
	- интерпретировать формулы логики предикатов;	
	- определять множество истинности предиката;	
	- классифицировать предикаты;	
	- выполнять тождественные преобразования формул логики предикатов, в т.ч. к предварённой	
	нормальной форме	
4	Формальные аксиоматические теории	
	В результате работы на практическом занятии студент получает навык:	
	- доказывать теоремы формализованного исчисления высказываний, в т.ч. с использованием	
	теоремы о дедукции;	
	- строить доказательства простейших теорем формальной арифметики с помощью аксиомы	
	индукции	
5	Формализованное исчисление высказываний (ФИВ)	
	В результате работы на практическом занятии студент получает навык:	
	- доказывать теоремы формализованного исчисления высказываний с использованием теоремы о	
	дедукции.	
6	Вычислимые функции	
	В результате работы на практическом занятии студент получает навык:	

№ п/п	Тематика практических занятий/краткое содержание	
	- классифицировать вычислимые функции;	
	- доказывать вычислимость по Чёрчу простейших рекурсивных функций	
7	Машина Тьюринга	
	В результате работы на практическом занятии студент получает навык:	
	- описывать машину Тьюринга в табличном виде;	
	- представлять функциональную схему машины Тьюринга в символьном виде;	
	- строить машину Тьюринга для простейших функций, вычислимых по Тьюрингу	
8	Основы теории сложности алгоритмов	
	В результате работы на практическом занятии студент получает навык:	
	- классифицировать массовые проблемы;	
	- классифицировать алгоритмы по шкале их асимптотической сложности	

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы	
1	Изучение учебной литературы из приведенных источников	
2	Подготовка к практическим занятиям	
3	Подготовка к промежуточной аттестации.	
4	Подготовка к текущему контролю.	

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№	Библиографическое описание	Место доступа
Π/Π	внознографи псекое описание	Wicero goeryna
1	Судоплатов, С. В. Математическая	https://urait.ru/bcode/559978 (дата обращения:
	логика и теория алгоритмов : учебник	09.04.2025
	и практикум для вузов / С. В.	
	Судоплатов, Е. В. Овчинникова. — 5-	
	е изд., стер. — Москва : Издательство	
	Юрайт, 2022. — 207 с. — (Высшее	
	образование). — ISBN 978-5-534-	
	12274-9.	
2	Авдеюк, О. А. Лекции и практикум по	https://e.lanbook.com/book/157217 (дата
	основам дискретной математики и	обращения: 09.04.2025).
	математической логике: учебно-	
	методическое пособие / О. А. Авдеюк,	
	Л. В. Дружинина, И. В. Приходькова.	
	— Волгоград : ВолгГТУ, 2019. — 316	
	c. — ISBN 978-5-9948-3251-6	
3	Задачи и упражнения по	https://e.lanbook.com/book/247400 (дата
	математической логике, дискретным	обращения: 09.04.2025).
	функциям и теории алгоритмов / М.	

	М. Глухов, О. А. Козлитин, В. А.	
	1	
	Шапошников, А. Б. Шишков. — 3-е	
	изд., стер. — Санкт-Петербург : Лань,	
	2022. — 112 c. — ISBN 978-5-507-	
	44852-4.	
4	Лихтарников, Л. М. Математическая	https://e.lanbook.com/book/210281 (дата
	логика. Курс лекций. Задачник-	обращения: 09.04.2025)
	практикум и решения: учебное	
	пособие / Л. М. Лихтарников, Т. Г.	
	Сукачева. — 4-е изд., стер. — Санкт-	
	Петербург : Лань, 2022. — 288 с. —	
	ISBN 978-5-8114-0082-9	
5	Игошин, В. И. Сборник задач по	https://znanium.ru/catalog/document?pid=986940
	математической логике и теории	(дата обращения: 09.04.2025)
	алгоритмов: учебное пособие / В. И.	
	Игошин Москва : КУРС : ИНФРА-	
	M, 2019 392 c ISBN 978-5-906818-	
	08-9.	

- 6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).
 - Научно-техническая библиотека РУТ (МИИТ) (http://library.miit.ru);
 - Информационный портал Научная электронная библиотека eLIBRARY.RU (www.elibrary.ru);
 - Образовательная платформа «Юрайт» (https://urait.ru/);
 - Электронно-библиотечная система издательства «Лань» (http://e.lanbook.com/);
 - Интернет-университет информационных технологий (http://www.intuit.ru/).
- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Microsoft Internet Explorer (или аналог)
Операционная система Microsoft Windows (или аналог)
Microsoft Office (или аналог)

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебные аудитории для проведения учебных занятий, оснащенные компьютерной техникой и наборами демонстрационного оборудования.

9. Форма промежуточной аттестации:

Зачет во 2 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, к.н. кафедры «Цифровые технологии управления транспортными процессами»

В.М. Моргунов

Согласовано:

Заведующий кафедрой ЦТУТП

В.Е. Нутович

Председатель учебно-методической

комиссии Н.А. Андриянова