МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 09.03.01 Информатика и вычислительная техника, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Математические методы оптимизации

Направление подготовки: 09.03.01 Информатика и вычислительная

техника

Направленность (профиль): Системы автоматизированного

проектирования

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

D подписи: 2899

Подписал: И.о. заведующего кафедрой Нестеров Иван

Владимирович

Дата: 22.05.2024

1. Общие сведения о дисциплине (модуле).

Основная цель дисциплины – приобретение знаний, умений и навыков, необходимых для разработки систем автоматизированного оптимального проектирования транспортных конструкций и сооружений.

Задачами дисциплины (модуля) являются:

- овладение наиболее эффективными численными методами оптимизации;
- формирование навыков вычисления градиентов расчетных напряжений и перемещений.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-1** Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности;
- **ПК-1** Способен участвовать в исследовательской деятельности в области совершенствования информационных систем.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- методы решения задач безусловной оптимизации;
- основные методы решения задач условной оптимизации.
- постановку и основные методы решения задачи оптимизации несущих конструкций (в форме задачи нелинейного программирования).

Уметь:

- составлять математическое описание задач оптимизации различных видов в обычной и стандартной форме;
- использовать методы нулевого, первого и второго порядка для решения задач безусловной оптимизации;
- использовать методы нелинейного программирования для решения задач оптимизации несущих конструкций.

Владеть:

- способностью составлять математическое описание задач оптимизации различных видов в обычной и стандартной форме;

- способностью использовать методы нулевого, первого и второго порядка для решения задач безусловной оптимизации;
- способностью использовать методы нелинейного программирования для решения задач оптимизации несущих конструкций.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 5 з.е. (180 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Turning	Количество часов	
Тип учебных занятий		Семестр №8
Контактная работа при проведении учебных занятий (всего):		60
В том числе:		
Занятия лекционного типа	20	20
Занятия семинарского типа	40	40

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 120 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

№	W /			
п/п	Тематика лекционных занятий / краткое содержание			
1	Введение			
	Примеры постановки и математического описания задач оптимизации.			
	Стандартные обозначения неизвестных, ограничений и целевой функции.			
	Понятие допустимой области и ее графическая иллюстрация.			
	Классификация задач оптимизации и методов их решения по типу допустимой области.			
2	Численные методы безусловной оптимизации			
	Методы решения задач одномерной оптимизации (методы "золотого" сечения и квадратичной			
	интерполяции).			
	Методы безусловной оптимизации нулевого, первого и второго порядка			
3	Численные методы условной оптимизации			
	Классификация методов и элементы теории локальных экстремумов: конусы возможных,			
	касательных и допустимых направлений, конусы направлений убывания и спуска			
4	Численные методы условной оптимизации			
	Методы внутренних и внешних штрафных функций.			
	Вычисление длины шага спуска и стандартная корректировка.			
	Анализ и классификация ограничений и определение направления спуска в методе проекции			
	градиента.			
5	Специальные методы			
	Метод динамического программирования Р.Беллмана			

4.2. Занятия семинарского типа.

Лабораторные работы

_	1 1 1			
№	Наименование лабораторных работ / краткое содержание			
п/п	таименование лаоораторных раоот / краткое содержание			
1	Примеры постановки и математического описания задач оптимизации			
	Примеры постановки и математического описания задач оптимизации:			
	- стандартные обозначения неизвестных,			
	- ограничений и целевой функции.			
2	Понятие допустимой области			
	Графическая иллюстрация допустимой области.			
	Классификация задач оптимизации и методов их решения по типу допустимой области.			
3	Методы решения задач одномерной оптимизации			
	Методы решения задач одномерной оптимизации:			
	- методы "золотого" сечения и			
	- квадратичной интерполяции.			
4	Методы безусловной оптимизации различных порядков			
	Методы безусловной оптимизации нулевого, первого и второго порядка			
5	Классификация методов и элементы теории локальных экстремумов			
	Классификация методов и элементы теории локальных экстремумов:			
	- конусы возможных, касательных и допустимых направлений,			
	- конусы направлений убывания и спуска			
6	Ограничения и определение направления спуска в методе проекции градиента			
	Анализ и классификация ограничений и определение направления спуска в методе проекции			
	градиента.			
7	Шаг спуска и его корректировка			
	Вычисление длины шага спуска и стандартная корректировка			

№ п/п	Наименование лабораторных работ / краткое содержание
8	Штрафные функции в оптимизации
	Методы внутренних и внешних штрафных функций.

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	Изучение дополнительной литературы.
2	Подготовка к лабораторным работам.
3	Выполнение курсового проекта.
4	Подготовка к промежуточной аттестации.
5	Подготовка к текущему контролю.

- 4.4. Примерный перечень тем курсовых проектов
- 1.Оптимизация функции одной переменной. Унимодальные функции
- 2.Оптимизация функции одной переменной. Метод перебора
- 3. Оптимизация функции одной переменной. Метод дихотомии
- 4.Оптимизация функции одной переменной. Метод золотого сечения
- 5.Оптимизация функции одной переменной. Метод Фибоначчи
- 6. Метод квадратичной аппроксимации в одномерных задачах
- 7. Безусловная оптимизация функции нескольких переменных. Необходимые и достаточные условия экстремума
 - 8. Метод покоординатного спуска
 - 9.Метод градиентного спуска
 - 10.Метод наискорейшего спуска
 - 11.Метод сопряженных градиентов
- 12.Методы условной оптимизации функции нескольких переменных. Метод Лагранжа
 - 13.Отыскание наименьшего значения функции в замкнутой области
 - 14. Метод проекции градиента
 - 15. Весовая оптимизация плоской фермы
- 5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Методы оптимизации : учебник и практикум для	https://urait.ru/bcode/536292
	вузов / Ф. П. Васильев, М. М. Потапов, Б. А. Будак,	
	Л. А. Артемьева; под редакцией	
	Ф. П. Васильева. — Москва : Издательство Юрайт,	
	2024. — 375 с. — (Высшее образование). —	
	ISBN 978-5-9916-6157-7. — Текст : электронный //	
	Образовательная платформа Юрайт	
2	Сухарев, А. Г. Методы оптимизации: учебник и	https://urait.ru/bcode/507818
	практикум для бакалавриата и магистратуры /	
	А. Г. Сухарев, А. В. Тимохов, В. В. Федоров. — 3-е	
	изд., испр. и доп. — Москва : Издательство Юрайт,	
	2022. — 367 с. — (Бакалавр и магистр.	
	Академический курс). — ISBN 978-5-9916-3859-3.	
	— Текст : электронный // Образовательная	
	платформа Юрайт	
3	Струченков, В. И. Методы оптимизации трасс в	https://e.lanbook.com/book/64958.
	САПР линейных сооружений / В. И. Струченков.	— Режим доступа: для авториз.
	— Москва : COЛOH-Пресс, 2013. — 272 с. —	пользователей.
	ISBN 978-5-91359-139-5. — Текст : электронный //	
	Лань: электронно-библиотечная система.	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Официальный сайт РУТ (МИИТ) (https://www.miit.ru/).

Научно-техническая библиотека РУТ (МИИТ) (http:/library.miit.ru).

Образовательная платформа «Юрайт» (https://urait.ru/).

Электронно-библиотечная система издательства «Лань» (http://e.lanbook.com/).

Электронно-библиотечная система ibooks.ru (http://ibooks.ru/).

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Microsoft Internet Explorer (или другой браузер).

Операционная система Microsoft Windows.

Microsoft Office.

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебные аудитории для проведения учебных занятий, оснащенные компьютерной техникой и наборами демонстрационного оборудования.

9. Форма промежуточной аттестации:

Курсовой проект в 8 семестре. Экзамен в 8 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, доцент, к.н. кафедры «Системы автоматизированного проектирования»

доцент, доцент, к.н. кафедры

«Системы автоматизированного

проектирования» Е.С. Бадьина

Ю.Ф. Тарарушкин

Согласовано:

и.о. заведующего кафедрой САП И.В. Нестеров

Председатель учебно-методической

комиссии М.Ф. Гуськова