МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 01.03.02 Прикладная математика и информатика, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Математические модели транспортной механики

Направление подготовки: 01.03.02 Прикладная математика и

информатика

Направленность (профиль): Математическое моделирование и системный

анализ

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 5665

Подписал: заведующий кафедрой Нутович Вероника

Евгеньевна

Дата: 09.04.2025

1. Общие сведения о дисциплине (модуле).

Целью освоения дисциплины (модуля) является:

- ознакомление студентов с основными, наиболее типичными математическими моделями и идеями, встречающимися в современном изучении транспортной механики.

Задачами освоения дисциплины (модуля) являются:

- изучение математических моделей транспортной механики;
- обучение применению основных моделей транспортной механики при решении практических задач.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ПК-4 - Уметь ставить цели создания системы, разрабатывать концепцию системы и требования к ней, выполнять декомпозицию требований к системе.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- анализировать и сравнивать имеющиеся методы и средства решения задач для математических моделей в транспортной механике

Уметь:

- использовать современный математический аппарат для анализа сложных структур, описываемых математическими моделями в транспортной механике

Владеть:

- современными методами исследования, как аналитическими, так и численными, для реализации алгоритмов анализа сложных структур, возникающих в математических моделях в транспортной механике
- современными методами исследования, как аналитическими, так и численными, для реализации алгоритмов анализа сложных структур, возникающих в математических моделях в транспортной механике
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 3 з.е. (108 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
тип учсоных занятии		Семестр №7
Контактная работа при проведении учебных занятий (всего):	80	80
В том числе:		
Занятия лекционного типа	48	48
Занятия семинарского типа	32	32

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 28 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

№ п/п	Тематика лекционных занятий / краткое содержание
1	Некоторые проблемы транспортной механики
	Рассматриваемые вопросы.
	- пропускная и провозная способность железных дорог;
	- проблема повышения провозной способности железных дорог.
2	Длинносоставные грузовые поезда
	Рассматриваемые вопросы.
	- одинарные и сдвоенные поезда;
	- проблемы управления.

-
_
ойства
войства
войства

№ п/п	Тематика лекционных занятий / краткое содержание
15	Распространение возмущений в одномерных средах
	Рассматриваемые вопросы
	- линейные одномерные среды (модель Жуковского продольной динамики поезда);
	- нелинейные одномерные среды и соответствующие модели продольной механики.
16	Ударные волны в одномерных средах и задачи продольной динамики поезда
	Рассматриваемые вопросы
	- автомодельные решения;
	- возникновение ударных волн в поезде.

4.2. Занятия семинарского типа.

Практические занятия

	практические запития	
№ п/п	Тематика практических занятий/краткое содержание	
1	Решение задач по уравнениям механики систем материальных точек	
-	В результате выполнения заданий студент приобретает навыки решения задач по построению	
	уравнений движения материальных точек.	
2	Решение задач по одномерным консервативным системам	
	В результате выполнения заданий студент приобретает навыки решения задач по одномерным	
	консервативным системам.	
3	Решение задач по одномерным системам с трением	
	В результате выполнения заданий студент приобретает навыки решения задач по одномерным	
	системам с трением.	
4	Построение фазовых портретов для одномерных консервативных систем	
	В результате выполнения заданий студент приобретает навыки решения задач по построению	
	фазовых портретов для одномерных систем.	
5	Физическая интерпретация линейных систем уравнений на плоскости	
	В результате выполнения заданий студент приобретает навыки решения задач по построению	
	физической интерпретации линейных систем уравнений на плоскости.	
6	Решение уравнения Эйлера в различных частных случаях	
	В результате выполнения заданий студент приобретает навыки решения уравнения Эйлера в	
	различных случаях.	
7	Построение преобразования Лежандра для различных случаев	
	В результате выполнения заданий студент приобретает навыки решения задач по построению	
	преобразования Лежандра.	
8	Свойства гамильтоновых систем	
	В результате выполнения заданий студент приобретает навыки решения гамильтоновых систем.	
9	Задачи на физический смысл гамильтониана в механике	
	В результате выполнения заданий студент приобретает навыки решения задач по построению	
	интерпретаций гамильтониана.	
10	Сплошные среды - основные законы	
	В результате выполнения заданий студент приобретает навыки решения задач по построению	
	математических моделей сплошных сред.	
11	Одномерный вариант закона Ньютона. Уравнение состояния	
	В результате выполнения заданий студент приобретает навыки решения задач по построению	
	математических моделей с различными уравнениями состояния.	

$N_{\underline{0}}$	Томотика проктиноских роздатий/краткое со порукание		
п/п	Тематика практических занятий/краткое содержание		
12	Гиперболические системы с двумя независимыми переменными		
	В результате выполнения заданий студент приобретает навыки решения задач по построению		
	решений гиперболических систем с двумя независимыми переменными.		
13	Постановка задач для гиперболических систем на плоскости		
	В результате выполнения заданий студент приобретает навыки по постановке задач для		
	гиперболических систем с двумя независимыми переменными.		
14	Распространение возмущений в линейных сплошных средах		
	В результате выполнения заданий студент приобретает навыки по построению решений задач о		
	распространении волн в линейных средах.		
15	Распространение возмущений в одномерных нелинейных сплошных средах		
	В результате выполнения заданий студент приобретает навыки по построению решений задач о		
	распространении волн в нелинейных средах.		
16	Ударные волны в одномерных сплошных средах		
	В результате выполнения заданий студент приобретает навыки решения задач по построению		
	ударных волн.		

4.3. Самостоятельная работа обучающихся.

No	Вид самостоятельной работы
п/п	Вид самостоятельной расоты
1	Работа с литературой.
2	Работа с лекционым материалом.
3	Текущая подготовка к занятиям.
4	Выполнение курсовой работы.
5	Подготовка к промежуточной аттестации.
6	Подготовка к текущему контролю.

4.4. Примерный перечень тем курсовых работ

- 1. Распространение возмущений в поезде при заданном жестком характере межвагонных связей при трогании с места.
- 2. Распространение возмущений в поезде при заданном мягком характере межвагонных связей при трогании с места.
- 3. Построение автомодельных решений при заданном жестком характере межвагонных связей.
- 4. Построение автомодельных решений при заданном мягком характере межвагонных связей.
- 5. Ударные волны в нелинейных средах случай жестких межвагонных связей.
- 6. Волны разгрузки в нелинейных средах случай мягких межвагонных связей.

- 7. Отражение ударных волн от границ случай мягких межвагонных связей.
- 8. Распространение возмущений в поезде при заданном жестком характере межвагонных связей при рекуперативном торможении.
- 9. Распространение возмущений в поезде при заданном жестком характере межвагонных связей при рекуперативном торможении.
- 10. Отражение ударных волн от границ случай жестких межвагонных связей.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Мышкис, А. Д. Прикладная математика для инженеров. Специальные курсы : учебное пособие / А. Д. Мышкис. — Москва : ФИЗМАТЛИТ, 2006. — 688 с. — ISBN 978-5-9221-0747-1	https://znanium.ru/read?id=250263 (дата обращения: 25.06.2025)
2	Кожевников, Н. М. Концепции современного естествознания: учебное пособие / Н. М. Кожевников. — 5-е изд., испр. — Санкт-Петербург: Лань, 2022. — 384 с. — ISBN 978-5-8114-0979-2	https://e.lanbook.com/book/212264 (дата обращения: 09.04.2025)
3	Бабаева, М. А. Концепции современного естествознания: учебник для вузов / М. А. Бабаева. — 2-е изд. доп. — Санкт-Петербург: Лань, 2021. — 436 с. — ISBN 978-5-8114-8564-2	https://e.lanbook.com/book/183370 (дата обращения: 09.04.2025)

- 6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).
 - Научно-техническая библиотека РУТ (МИИТ) (http://library.miit.ru);
- Информационный портал Научная электронная библиотека eLIBRARY.RU (www.elibrary.ru);
 - Образовательная платформа «Юрайт» (https://urait.ru/);
- Электронно-библиотечная система издательства «Лань» (http://e.lanbook.com/);
- Интернет-университет информационных технологий (http://www.intuit.ru/).

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Операционная система Windows;

- Microsoft Office;
- MS Teams;
- Поисковые системы.
- 8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Для проведения занятий лекционного типа требуются аудитории, оснащенные компьютерной техникой и наборами демонстрационного оборудования.

Для практических занятий – наличие персональных компьютеров.

9. Форма промежуточной аттестации:

Зачет в 7 семестре.

Курсовая работа в 7 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

профессор, профессор, д.н. кафедры «Цифровые технологии управления транспортными процессами»

А.М. Филимонов

Согласовано:

Заведующий кафедрой ЦТУТП

В.Е. Нутович

Председатель учебно-методической

комиссии Н.А. Андриянова