МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы магистратуры по направлению подготовки 15.04.06 Мехатроника и робототехника, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Математическое и компьютерное моделирование роботов и робототехнических систем

Направление подготовки: 15.04.06 Мехатроника и робототехника

Направленность (профиль): Роботы и робототехнические системы

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 6216

Подписал: заведующий кафедрой Неклюдов Алексей

Николаевич

Дата: 01.06.2024

1. Общие сведения о дисциплине (модуле).

Целями освоения дисциплины (модуля) являются:

- формирование умения находить адекватную замену процесса в РТС соответствующей математической моделью;
- исследование математических моделей РТСметодами вычислительной математики с привлечением средств современной вычислительной техники.

Задачами дисциплины (модуля) являются:

- овладение знаниями о методах составления математических моделей PTC;
- овладение знаниями об исследовании математических моделей на ЭВМ с помощью прикладных программ.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-1** Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования в профессиональной деятельности;
- ОПК-11 - Способен организовывать разработку и применение алгоритмов и современных цифровых программных методов расчетов и устройств и подсистем мехатронных проектирования отдельных робототехнических систем с использованием стандартных исполнительных и управляющих устройств, средств автоматики, измерительной вычислительной техники в соответствии техническим заданием, разрабатывать цифровые алгоритмы И программы управления робототехнических систем;
- **ОПК-13** Способен использовать основные положения, законы и методы естественных наук и математики при формировании моделей и методов исследования мехатронных и робототехнических систем;
- **ПК-1** Способен составлять математические модели мехатронных и робототехнических систем, их подсистем, включая исполнительные, информационно-сенсорные и управляющие модули, с применением методов формальной логики, методов конечных автоматов, сетей Петри, методов искусственного интеллекта, нечеткой логики, генетических алгоритмов, искусственных нейронных и нейро-нечетких сетей;
- **ПК-2** Способен использовать имеющиеся программные пакеты и, при необходимости, разрабатывать новое программное обеспечение,

необходимое для обработки информации и управления в мехатронных и робототехнических системах, а также для их проектирования;

- **ПК-3** Способен разрабатывать экспериментальные макеты управляющих, информационных и исполнительных модулей мехатронных и робототехнических систем и проводить их исследование с применением современных информационных техно-логий;
- **ПК-5** Способен разрабатывать методики проведения экспериментов и проводить эксперименты на действующих макетах и образцах мехатронных и робототехнических систем и их подсистем, обрабатывать результаты с применением современных информационных технологий и технических средств;
- **ПК-8** Способен выполнять теоретические и экспериментальные исследования мехатронных и робототехнических систем с использованием современных информационно-измерительных устройств.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

знать основные принципы и методы математического моделирования динамики робототехнических систем;

знать математический аппарат для описания кинематики и динамики многозвенных механизмов;

знать методы численного решения дифференциальных уравнений движения роботов;

знать принципы построения компьютерных моделей робототехнических систем;

знать современное программное обеспечение для моделирования роботов;

знать методы параметрической идентификации моделей робототехнических систем;

знать принципы верификации и валидации компьютерных моделей;

знать методы оптимизации параметров робототехнических систем на основе моделей.

Уметь:

уметь составлять математические модели кинематики и динамики робототехнических систем;

уметь разрабатывать компьютерные модели роботов в специализированных программных средах;

уметь проводить параметрическую идентификацию моделей по экспериментальным данным;

уметь выполнять численное моделирование динамики робототехнических систем;

уметь анализировать результаты моделирования и делать выводы о поведении системы;

уметь оптимизировать параметры робототехнических систем на основе моделей;

уметь проводить верификацию и валидацию компьютерных моделей;

уметь выбирать адекватные методы моделирования для различных классов робототехнических систем.

Владеть:

владеть математическим аппаратом для моделирования кинематики и динамики роботов;

владеть навыками работы с программными комплексами моделирования робототехнических систем;

владеть методами численного интегрирования уравнений движения;

владеть методиками параметрической идентификации математических моделей;

владеть технологиями верификации и валидации компьютерных моделей;

владеть методами анализа и интерпретации результатов моделирования; владеть навыками оптимизации параметров робототехнических систем на основе моделей;

владеть современными подходами к созданию цифровых двойников робототехнических систем.

- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 9 з.е. (324 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Колич	Количество часов	
	Всего	Семестр	

		№ 2	№ 3
Контактная работа при проведении учебных занятий (всего):	96	48	48
В том числе:			
Занятия лекционного типа	32	16	16
Занятия семинарского типа	64	32	32

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 228 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

№	Томотунко покумунули у роздатуй / кротуго с со поруголую			
Π/Π	Тематика лекционных занятий / краткое содержание			
1	Общие положения моделирования.			
	Рассматриваемые вопросы:			
	- моделирование как метод научного познания;			
	- основные понятия и определения;			
	- область применения математических моделей;			
	- роль и место моделирования в проектировании РТС.			
2	Адекватность и эффективность моделей. Классификация моделей.			
	Рассматриваемые вопросы:			
	- адекватность модели;			
	- процесс построения модели;			
	- теория подобия;			
	- факторы, влияющие на адекватность модели;			
	- классификация моделей.			
3	Основные этапы математического моделирования.			
	Рассматриваемые вопросы:			
	- основные понятия математического моделирования;			
	- классификация математических моделей;			
	- использование прикладных программ для создания моделей;			
	- этапы математического моделирования.			

No				
п/п	Тематика лекционных занятий / краткое содержание			
4	Разновидности задач моделирования. Методы математического программирования.			
	Рассматриваемые вопросы:			
	- прямые и обратные задачи моделирования и примеры;			
	- детерминированные и стохастические задачи и примеры этих задач;			
	- линейные и нелинейные задачи;			
	- классификация методов математического программирования.			
5	Линейное программирование.			
	Рассматриваемые вопросы:			
	- основные понятия линейного программирования;			
	- примеры решения задач линейного программирования.			
6	Нелинейное программирование.			
	Рассматриваемые вопросы:			
	- виды нелинейных моделей;			
	- математическое описание нелинейных моделей;			
7	- примеры решения задач нелинейного программирования для РТС.			
7	Математические модели в виде дифференциальных уравнений.			
	Рассматриваемые вопросы:			
	- математическое описание модели в виде дифференциальных уравнений;			
	 - способы исследования модели в виде дифференциальных уравнений; - пример решения для одномассовой механической системы; 			
	- пример решения для одномассовой механической системы, - модели, заданные в виде уравнений в частных производных.			
8	Стохастические модели.			
0	Рассматриваемые вопросы:			
	- основные понятия теории вероятностей;			
	- примеры стохастических моделей;			
	- обработка опытных данных.			
9	Искусственный интеллект и его использование в РТС.			
	Рассматриваемые вопросы:			
	- история возникновения и развития искусственного интеллекта;			
	- системы технического зрения;			
	- распознавание и анализ изображений;			
	- искусственные нейронные сети.			
10	Основные задачи динамики механических систем и способы их решения.			
	Рассматриваемые вопросы:			
	- общие сведения о динамике механических систем (МС);			
	- классификация МС;			
	- основные задачи динамики МС;			
	- способы решения основных задач динамики МС.			
11	Построение расчетных схем механических систем и общие принципы их расчета.			
	Рассматриваемые вопросы:			
	- обозначения на эквивалентных схемах МС;			
	- основные законы динамики;			
	- классификация сил;			
	принцип Даламбера;уравнения Лагранжа.			
12				
12	Приведенные массы, моменты инерции, силы и моменты сил МС. Рассматриваемые вопросы:			
	- правила нахождения приведенных сил и моментов сил;			
	- правила нахождения приведенных сил и моментов сил; - привила нахождения приведенных масс и моментов инерции;			
	- приведение жесткостей;			

No	Тематика лекционных занятий / краткое содержание		
Π/Π	тематика лекционных занятии / краткое содержание		
	- приведенные массы, моменты инерции, силы и моменты сил МС, приведенные жесткости на		
	примере механической системы качания руки робота.		
13	Уравнения движения жёстких механических систем.		
	Рассматриваемые вопросы:		
	- уравнения движения для ненагруженных механизмов;		
	- составление уравнений движения при нагружении механизмов;		
	- примеры составления уравнений движения для электрических приводов роботов.		
14	Динамические процессы ненагруженных механизмов, при нагружении и после		
	разгона.		
	Рассматриваемые вопросы:		
	- уравнения движения для ненагруженных механизмов;		
	- составление уравнений движения при нагружении механизмов;		
	- примеры составления уравнений движения для электрических приводов роботов.		
15	Основы расчета динамики робототехнических систем с присоединенной массой и с		
	гибкими звеньями.		
	Рассматриваемые вопросы:		
	- особенности динамики машин с гибкими звеньями.		
	- пример составления уравнений движения для конвейера.		
16	Динамические расчеты МС с гидравлическими, пневматическими и		
	электрическими связями.		
	Рассматриваемые вопросы:		
	- особенности составления уравнений динамики для механических систем с гидравлическими		
	связями;		
	- особенности составления уравнений динамики для механических систем с пневматическими		
	связями;		
	- особенности составления уравнений динамики для механических систем с электрическими		
	связями.		

4.2. Занятия семинарского типа.

Лабораторные работы

	1 1 1			
№ п/п	Наименование лабораторных работ / краткое содержание			
1	В результате выполнения лабораторной работы			
	В результате выполнения лабораторной работы рассматривается различные методы решения задач с помощью Python.			
2	Описание системы дифференциальных уравнений в Python.			
	В результате выполнения лабораторной работы рассматриваются правила составления программы			
	для решения дифференциальных уравнений.			
3	Моделирование процессов в одномассовой системе.			
	В результате выполнения лабораторной работы строится математическая модель для одномассовой			
	механической системы и исследуется с помощью Python.			
4	Математическое моделирование процессов в двухмассовой механической системе.			
	В результате выполнения лабораторной работы строится модель двухмассовой МС и исследуется с помощью Python.			
5	Составление уравнений динамики для механической системы.			
	В результате выполнения лабораторной работы составляется модель для заданной преподавателем			
	MC и исследуется в Python.			

No				
п/п	Наименование лабораторных работ / краткое содержание			
6	Математическое моделирование процессов в механической системе.			
	В результате выполнения лабораторной работы движение МС моделируется и исследуется в Python.			
7	Моделирование работы МС с гидравлическими связями.			
	В результате выполнения лабораторной работы моделируется работа гидравлического привода.			
8	Моделирование работы МС с электрическими связями.			
	В результате выполнения лабораторной работы моделируется работа электрического привода			
	постоянного и переменного тока.			
9	Этапы математического моделирования на примере моделирования движения			
	звена манипулятора.			
	В результате выполнения лабораторной работы студенты составляют математическую модель.			
10	Точные и численные методы решения математических задач и их использование			
	при моделировании.			
	В результате выполнения лабораторной работы рассматриваются различные методы решения задач			
	с помощью Python.			
11	Прямые и обратные задачи моделирования.			
	В результате выполнения лабораторной работы рассматриваются решения прямых и обратных			
	задач моделирования.			
12	Составление математической модели с применением фундаментальных законов.			
	В результате выполнения лабораторной работы рассматривается составление математических			
1.2	моделей с применением законов сохранения энергии, материи, импульса.			
13	Составление математической модели с применением вариационных принципов.			
1.4	Составление математической модели с применением вариационных принципов.			
14	Составление математической модели с применением аналогий.			
	В результате выполнения лабораторной работы рассматривается составление математических моделей с применением аналогий.			
15	Математическое моделирование физических процессов.			
13	В результате выполнения лабораторной работы рассматриваются математические модели			
	различных по приводе физических процессов.			
	Laster was to the safe August seems the decease.			

Практические занятия

	-			
№ п/п	Тематика практических занятий/краткое содержание			
1	Линейное программирование.			
	В результате выполнения практического занятия студенты решают линейную задачу оптимизации с			
	помощью Python.			
2	Нелинейное программирование.			
	В результате выполнения практического занятия рассматривается решение задачи нелинейного			
	программирования в Python.			
3	Модель в виде обыкновенных дифференциальных уравнений.			
	В результате выполнения практического занятия рассматривается составление уравнений динамики			
	для механической системы и аналитические способы решения этих уравнений.			
4	В результате выполнения практического занятия рассматривается составление			
	уравнений динамики для механической системы и аналитические способы решения			
	этих уравнений.			
	В результате выполнения практического занятия рассматривается модели в частных производных			
	на примере теплопередачи.			

No			
п/п	Тематика практических занятий/краткое содержание		
5	Вероятностные модели. Статистические характеристики.		
	В результате выполнения практического занятия студенты находят статистические характеристики		
	вероятностной модели.		
6	Аппроксимация функций.		
	В результате выполнения практического занятия для набора данных находят аппроксимирующие		
	функции различных видов.		
7	Универсальность математических моделей.		
	В результате выполнения практического занятия студенты рассматриваю процессы колебаний в		
	объектах различной природы и убеждаются в том, что несмотря на разную сущность объектов, им		
	соответствуют изоморфные математические модели.		
8	Искусственные нейронные сети.		
	В результате выполнения практического занятия рассматривается способы построения нейронных сетей.		
9	Современные способы исследования математических моделей в виде		
	дифференциальных уравнений.		
	В результате выполнения практического занятия студенты знакомятся с современными		
	программными продуктами, которые позволяют решать дифференциальные уравнения.		
10	Составление программы вычисления функции в Python.		
	В результате выполнения практического занятия студенты составляют программу в среде Python.		
11	Составление программы построения графиков в различных системах координат.		
	В результате выполнения практического занятия студенты составляют программу для построения		
	различных типов графиков.		
12	Описание системы дифференциальных уравнений в виде матрицы в Python.		
	В результате выполнения практического занятия рассматриваются правила составления программы		
- 10	для решения дифференциальных уравнений.		
13	Применение иерархического подхода к составлению модели механической		
	системы РТС.		
	В результате выполнения практического занятия студенты составляют для механической системы		
	одномассовую и двухмассовую модели.		
14	Решение системы дифференциальных уравнений.		
	В результате выполнения практического занятия составляется математическая модель для		
1.5	одномассовой механической системы и исследуется в Python.		
15	Математическое моделирование процессов в двухмассовой механической системе.		
	В результате выполнения практического занятия составляется модель для двухмассовой МС и исследуется в Python.		
16	Математическое моделирование процессов в механической системе.		
	В результате выполнения практического занятия составляется модель для заданной преподавателем		
	MC и исследуется в Python.		

4.3. Самостоятельная работа обучающихся.

No	Вин ормостоятани ной работи	
Π/Π	Вид самостоятельной работы	
1	Подготовка к практическим занятиям.	
2	Изучение дополнительной литературы.	
3	Выполнение курсового проекта.	
4	Подготовка к промежуточной аттестации.	

4.4. Примерный перечень тем курсовых проектов

Вариант 1 «Разработка программного управления станка для резки панелей»

Вариант 2 «Разработка программного управления портального робота»

Вариант 3 «Разработка программного управления конвейерном и роботом»

Вариант 4 «Разработка программного управления роботизированной ячейки по ремонту элементов подвижного состава»

Вариант 5 « Разработка программного управления роботизированной ячейки по ремонту элементов железнодорожного пути»

Вариант 6 «Разработка программного управления роботизированной ячейки по изготовлению элементов подвижного состава»

Вариант 7 «Разработка программного управления роботизированной ячейки для сварочных операций»

Вариант 8 «Разработка программного управления роботизированной ячейки для покрасочных операций»

Вариант 9 «Разработка программного управления роботизированной ячейки герметизирующих операций»

Вариант 10 « Разработка программного управления роботизированной ячейки по ремонту элементов железнодорожного пути»

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Маликов, Р. Ф. Основы математического моделирования: учебное пособие / Р. Ф. Маликов. — Москва: Горячая линия-Телеком, 2010. — 368 с. — ISBN 978-5-9912-0123-0.	URL: https://e.lanbook.com/book/5169 (дата обращения: 21.04.2023) Текст: электронный.
2	Плотников, С. А. Математическое моделирование систем управления: учебное пособие / С. А. Плотников, Д. М. Семенов, А. Л. Фрадков. — Санкт-Петербург: НИУ ИТМО, 2021. — 193 с.	URL: https://e.lanbook.com/book/283607 (дата обращения: 21.04.2023) Текст: электронный.
3	Крыжановский, Г. А. Моделирование транспортных процессов: учебное пособие / Г. А. Крыжановский. — Санкт-Петербург: СПбГУ ГА, 2014. — 262 с.	URL: https://e.lanbook.com/book/145484 (дата обращения: 12.04.2023) Текст: электронный.

4	Савич, Е. Л. Техническое обслуживание и ремонт	URL:
	автомобилей: учебное пособие / Е. Л. Савич, А. С.	https://e.lanbook.com/book/154191
	Гурский. — Минск : РИПО, 2019. — 425 с. —	(дата обращения: 21.04.2023)
	ISBN 978-985-503-959-5.	Текст: электронный.
5	Петров, А. В. Моделирование процессов и систем	URL:
	: учебное пособие / А. В. Петров. — Санкт-	https://e.lanbook.com/book/212213
	Петербург: Лань, 2022. — 288 с. — ISBN 978-5-	(дата обращения: 12.04.2023)
	8114-1886-2.	Текст: электронный.
6	Ильичева, В. В. Моделирование систем и	URL:
	процессов: учебное пособие / В. В. Ильичева. —	https://e.lanbook.com/book/147356
	Ростов-на-Дону: РГУПС, 2020. — 92 с. — ISBN	(дата обращения: 12.04.2023)
	978-5-88814-894-5.	Текст: электронный.

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Официальный сайт РУТ (МИИТ) (https://www.miit.ru/).

Научно-техническая библиотека РУТ (МИИТ) (http:/library.miit.ru).

Образовательная платформа «Юрайт» (https://urait.ru/).

Электронно-библиотечная система издательства «Лань» (http://e.lanbook.com/).

Электронно-библиотечная система ibooks.ru (http://ibooks.ru/).

Электронно-библиотечная система Znanium (http://znanium.ru/).

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Microsoft Internet Explorer (или другой браузер).

Операционная система Microsoft Windows.

Microsoft Office.

Microsoft Project.

- 8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).
- 1. Рабочее место преподавателя с персональным компьютером, подключённым к сетям INTERNET.
- 2. Программное обеспечение для создания текстовых и графических документов, презентаций.
- 3. Специализированная лекционная аудитория с мультимедиа аппаратурой.

9. Форма промежуточной аттестации:

Зачет во 2 семестре.

Курсовой проект в 3 семестре.

Экзамен в 3 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, доцент, к.н. кафедры «Наземные транспортнотехнологические средства»

А.В. Мишин

заведующий кафедрой, доцент, к.н. кафедры «Наземные транспортнотехнологические средства»

А.Н. Неклюдов

Согласовано:

Заведующий кафедрой НТТС

А.Н. Неклюдов

Председатель учебно-методической

комиссии С.В. Володин