МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы магистратуры по направлению подготовки 13.04.01 Теплоэнергетика и теплотехника, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Математическое моделирование и оптимизация термодинамических потерь промышленных теплоэнергетических объектов и систем

Направление подготовки: 13.04.01 Теплоэнергетика и теплотехника

Направленность (профиль): Энергосберегающие процессы и технологии

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 377843

Подписал: заведующий кафедрой Дмитренко Артур

Владимирович

Дата: 24.04.2024

1. Общие сведения о дисциплине (модуле).

Целью освоения учебной дисциплины «Математическое моделирование и оптимизация термодинамических потерь промышленных теплоэнергетических объектов и систем» является формирование в процессе подготовки магистров по направлению 13.04.01 «Теплоэнергетика и теплотехника» компетенций, позволяющих подготовить будущих магистров к математическому моделированию объектов в энергетике, промышленности, транспорте и объектах ЖКХ

Задачей преподавания дисциплины является приобретение студентами знаний об общих принципах построения математических моделей тепловых теплоэнергетических объектов

2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ПК-4** Способность разрабатывать и оптимизировать технологические решения при проектировании теплоэнергетических объектов и систем;
- **ПК-6** Способность к осуществлению теоретического обобщения научных данных, результатов экспериментов и наблюдений с оформлением результатов научно-исследовательских работ в соответствии с актуальной нормативной документацией в профессиональной области знаний.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- основные требования к обеспечению требуемых характеристик режимов работы теплотехнологического оборудования;
- основные методы, технологии разработки и проектирования теплоэнергетических объектов и систем;
- критерии оценки эффективности теплоэнергетических объектов и систем;
- основные мероприятия по совершенствованию и оптимизации теплоэнергетических объектов и систем.

Уметь:

проводить оценку надёжности и эффективности работы теплотехнологического оборудования;

- формулировать задания на разработку проектных решений, связанных с модернизацией технологического оборудования, мероприятиями по улучшению эксплуатационных характеристик.

Владеть:

- навыками разработки и оптимизации технологических решений при проектировании теплоэнергетических объектов и систем;
 - навыком оформления результатов научно-исследовательских работ.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 5 з.е. (180 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
тип учесных занятии		Семестр №3
Контактная работа при проведении учебных занятий (всего):	64	64
В том числе:		
Занятия лекционного типа	32	32
Занятия семинарского типа	32	32

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 116 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).

4.1. Занятия лекционного типа.

No				
Π/Π	Тематика лекционных занятий / краткое содержание			
1	Основные положения и общие принципы построения математических моделей			
	агрегатов теплоэнергетики			
	Рассматриваемые вопросы:			
	- основы построения графической модели объектов теплоэнергетики;			
	- основы построения математической модели объектов теплоэнергетики			
2	Основные этапы построения математической модели газотурбинной установки,			
	работающей на природном газе			
	Рассматриваемые вопросы:			
	- теоретические основы построения графической модели;			
_	- теоретические основы построения математической модели.			
3	Основные этапы построения математической модели газотурбинной установки,			
	работающей на природном газе			
	Рассматриваемые вопросы:			
	- теоретические основы построения графической модели;			
	- теоретические основы построения математической модели.			
4	Основные этапы построения математической модели камеры сгорания агрегатов			
	Рассматриваемые вопросы:			
	- теоретические основы построения графической модели;			
5	- теоретические основы построения математической модели.			
)	Основные этапы построения математической модели двухступенчатого			
	компрессора с промежуточным и концевым охладителями			
	Рассматриваемые вопросы:			
	- теоретические основы построения графической модели; - теоретические основы построения математической модели			
6	Основные этапы построения математической модели водогрейной котельной			
U				
	установки, работающей на газовом топливе			
	Рассматриваемые вопросы: - теоретические основы построения графической модели;			
	- теоретические основы построения графической модели, - теоретические основы построения математической модели.			
7	Основные этапы построения математической модели пластинчатого пластинчатого			
	теплообменника			
	Рассматриваемые вопросы:			
	- теоретические основы построение графической модели;			
	- теоретические основы построение математической модели.			
8	Основные этапы построения математической модели кожухотрубного			
	теплообменника			
	Рассматриваемые вопросы:			
	- теоретические основы построения графической модели;			
	- теоретические основы построения математической модели.			

4.2. Занятия семинарского типа.

Практические занятия

$N_{\underline{0}}$	T			
п/п	Тематика практических занятий/краткое содержание			
1	Построения математических моделей объектов теплоэнергетики			
	В результате выполнения практического задания студент учится строить графические и			
	математические модели объектов теплоэнергетики			
2	Построение математической модели газотурбинной установки на природном газе			
	В результате выполнения практического задания студент учится строить графические и			
	математические модели газотурбинной установки, работающей на природном газе, а также			
2	проводить численное математическое моделирование			
3	Математическая модель камеры сгорания агрегатов			
	В результате выполнения практического задания студент учится строить графические и			
	математические модели камеры сгорания агрегатов, а также проводить численное математическое			
1	моделирование			
4				
	концевым охладителями			
	В результате выполнения практического задания студент учится строить графические и			
	математические модели, а также проводить численное математическое моделирование			
	двухступенчатого компрессора с промежуточным и концевым охладителями			
5	Математическая модель водогрейной котельной установки, работающей на газовом			
	топливе			
	В результате выполнения практического задания студент учится строить графические и			
	математические модели, а также проводить численное математическое моделирование водогрейной			
	котельной установки, работающей на газовом топливе			
6	Математическая модель пластинчатого пластинчатого теплообменника			
	В результате выполнения практического задания студент учится строить графические и			
	математические модели, а также проводить численное математическое моделирование			
	пластинчатого теплообменного аппарата			
7	Математическая модель кожухотрубного теплообменника			
	В результате выполнения практического задания студент учится строить графические и			
	математические модели, а также проводить численное математическое моделирование			
	кожухотрубного теплообменного аппарата			

4.3. Самостоятельная работа обучающихся.

No	Вид самостоятельной работы	
Π/Π	Вид самостоятельной рассты	
1	Подготовка к практическим занятиям	
2	Подготовка к лекционным занятиям	
3	Работа с лекционным материалом, литературой	
4	Выполнение курсовой работы.	
5	Подготовка к промежуточной аттестации.	
6	Подготовка к текущему контролю.	

4.4. Примерный перечень тем курсовых работ

1. Общие принципы построения математических моделей агрегатов теплоэнергетики

- 2. Математическая модель газотурбинной установки, работающей на природном газе
 - 3. Математическая моделЬ камеры сгорания агрегатов
- 4. Математическая модель двухступенчатого компрессора с промежуточным и концевым охладителями
- 5. Математическая модель водогрейной котельной установки, работающей на газовом топливе
 - 6. Математическая модель пластинчатого теплообменника
 - 7. Математическая модель кожухотрубного теплообменника
 - 8. Математическая модель паровой котельной, работающей на газе
- 9. Математическая модель водогрейной котельной, работающей на жидком топливе
 - 10. Математическая модель парогазовой установки (ПГУ)

Для каждой темы курсовых работ используются вариативные вводные данные в зависимости от номера по списку.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Протасевич А.М. Энергосбережение в системах теплогазоснабжения, вентиляции и кондиционирования воздуха. Учебное пособие. Издательство: НИЦ ИНФРА-М, 2025. – 86 с. ISBN: 978-5-16-018991-8	https://znanium.ru/read?id=460210
2	Овчинников Ю.В., Григорьева О.К., Францева А.А. Энергосбережение в теплоэнергетике и теплотехнологиях: учеб. пособие. Издательство Новосибирский государственный технический университет, 2015. — 258 с. ISBN 978-5-7782-2606-7	https://e.lanbook.com/book/118095
3	Котомкин В. Н. Энергосбережение в промышленности. Энергоаудит: Учебное пособие для вузов - Издательство "Лань", 2025. 0 360 с. ISBN 978-5-507-52802-8	https://e.lanbook.com/book/501725

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Информационный портал Научная электронная библиотека eLIBRARY.RU (http://www.elibrary.ru);

Научно-техническая библиотека РУТ (МИИТ) (http://www.library.miit.ru).

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Программы Microsoft Office.

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Мультимедийные комплексы, персональные компьютеры в специализированных аудиториях.

9. Форма промежуточной аттестации:

Курсовая работа в 3 семестре. Экзамен в 3 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

заведующий кафедрой, профессор, д.н. кафедры «Теплоэнергетика транспорта» Института транспортной техники и систем управления

А.В. Дмитренко

Согласовано:

Заведующий кафедрой ТТ А.В. Дмитренко

Председатель учебно-методической

комиссии С.В. Володин