МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы специалитета по специальности 23.05.04 Эксплуатация железных дорог, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Математическое моделирование на транспорте

Специальность: 23.05.04 Эксплуатация железных дорог

Специализация: Магистральный транспорт

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 5665

Подписал: заведующий кафедрой Нутович Вероника

Евгеньевна

Дата: 30.04.2025

1. Общие сведения о дисциплине (модуле).

Целями освоения дисциплины «Математическое моделирование на изучение транспорте» является принципов математического имитационного компьютерного моделирования, постановки статистического обработки статистических эксперимента данных И моделирования, а также о применении компьютерного моделирования в областях деятельности ж/д транспорта, как крупного промышленного предприятия. Задачей дисциплины является формирование обучающихся навыков проведения имитационных компьютерных экспериментов, а также навыки пользования прикладными программными продуктами для имитационного моделирования.

2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ОПК-1 - Способен решать инженерные задачи в профессиональной деятельности с использованием методов естественных наук, математического анализа и моделирования.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Уметь:

применять методы математического анализа и моделирования

Знать:

основные понятия и методы теории вероятностей, математической статистики,

дискретной математики, основы математического моделирования

Владеть:

методами математического описания физических явлений и процессов, определяющих принципы работы различных технических устройств

- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 5 з.е. (180 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

		Количество часов		
Тип учебных занятий	Всего	Семестр		
		№4	№5	
Контактная работа при проведении учебных занятий (всего):		32	64	
В том числе:				
Занятия лекционного типа		16	32	
Занятия семинарского типа	48	16	32	

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 84 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

No	Томотуме научиону и роматуй / уполую со наручами	
Π/Π	Тематика лекционных занятий / краткое содержание	
1	Введение	
	Рассматриваемые вопросы:	
	- основные типы математических моделей;	
	- принципы построения математических моделей;	
	- компьютерное моделирование и его практическое применение;	
	- математическая обработка результатов моделирования.	
2	Задача линейного программирования (ЗЛП)	
	Рассматриваемые вопросы:	
	- экономическая и математическая постановка задачи планирования выпуска продукции;	
	- графический способ решения ЗЛП;	
	- анализ чувствительности решения к изменениям исходных данных;	
	- симплекс-метод решения ЗЛП.	

№				
п/п	Тематика лекционных занятий / краткое содержание			
3	Задачи транспортного типа			
	Рассматриваемые вопросы:			
	- транспортная задача в матричной постановке, замкнутая и открытая задачи;			
	- транспортная задача в сетевой постановке;			
	- приближённые методы решения транспортной задачи;			
	- метод потенциалов;			
	- задача о назначении (задача выбора), венгерский метод;			
	- задача коммивояжёра;			
4	- распределительная задача.			
4	Задача планирования выпуска продукции, методы решения			
	Рассматриваемые вопросы:			
	- постановка задачи;			
	- графический способ решения;			
	- анализ чувствительности решения к изменениям исходных данных;			
	- симплекс-метод.			
5	Транспортная задача – постановка и определения			
	Рассматриваемые вопросы:			
	- общая постановка транспортной задачи;			
-	- транспортная задача в матричной постановке, замкнутая и открытая задачи.			
6	Транспортная задача – методы решения			
	Рассматриваемые вопросы:			
	- приближённые методы решения транспортной задачи;			
7	- метод потенциалов.			
/	Задача о назначениях			
	Рассматриваемые вопросы: - общая постановка задачи;			
	- оощая постановка задачи, - методы решения задачи о назначениях, сведение её к транспортной задаче.			
8	Распределительная задача			
0	Рассматриваемые вопросы:			
	- общая постановка задачи;			
	- общая постановка задачи, - методы решения распределительной задачи, сведение её к транспортной задаче.			
9	Задача коммивояжёра			
	Рассматриваемые вопросы:			
	- общая постановка задачи;			
	- оощая постановка задачи, - приближённые и точные методы решения задачи коммивояжёра.			
10	Моделирование случайных величин – метод обратной функции			
10	Рассматриваемые вопросы:			
	- моделирование случайных величин, заданных законом распределения;			
	- метод обратной функции.			
11	Моделирование случайных величин – критерий Пирсона			
~~	Рассматриваемые вопросы:			
	- критерий Пирсона соответствия теоретического и эмпирического распределений.			
12	Системы массового обслуживания (СМО)			
1,4	Рассматриваемые вопросы:			
	- методы моделирование СМО;			
	- методы моделирование СМО, - расчёт характеристик СМО.			
	pas tel impartisphiethic chito.			

4.2. Занятия семинарского типа.

Лабораторные работы

No॒			
Π/Π	Наименование лабораторных работ / краткое содержание		
1	Задача планирования выпуска продукции		
	В результате выполнения лабораторной работы обучающиеся приобретут навык формализации инженерно-экономической задачи в модель линейного программирования, научатся находить		
	оптимальный план графическим методом и симплекс-методом с использованием MS Excel,		
	проводить анализ чувствительности решения к изменениям исходных данных.		
2	Транспортная задача		
	В результате выполнения лабораторной работы обучающиеся научатся составлять математическую		
	модель транспортной задачи, находить начальный опорный план методами северо-западного угла и		
	минимального элемента, оптимизировать план перевозок методом потенциалов, решать закрытые и		
	открытые транспортные модели.		
3	Задача о назначении (задача выбора)		
	В результате выполнения лабораторной работы обучающиеся освоят постановку задачи о		
	назначениях, приобретут навык решения венгерским методом, научатся анализировать матрицу		
	затрат и находить оптимальное распределение ресурсов.		
4	Задача коммивояжёра		
	В результате выполнения лабораторной работы обучающиеся научатся формулировать задачу		
	коммивояжера как задачу дискретной оптимизации, освоят эвристические методы поиска решений,		
	приобретут навык оценки качества маршрутов.		
5	Распределительная задача		
	В результате выполнения лабораторной работы обучающиеся научатся сводить распределительную		
	задачу к транспортной, решать её методом потенциалов, анализировать оптимальный план		
	распределения ресурсов.		
6	Моделирование случайных величин		
	В результате выполнения лабораторной работы обучающиеся освоят метод обратной функции для		
	генерации случайных величин, научатся строить гистограммы и эмпирические функции		
	распределения, сравнивать статистические характеристики с теоретическими параметрами		
	распределений.		
7	Критерий Пирсона		
	В результате выполнения лабораторной работы обучающиеся приобретут навык проверки		
	статистических гипотез о виде закона распределения, вычисления критерия хи-квадрат,		
	формулировки выводов о принятии или отвержении гипотезы.		
8	CMO		
	В результате выполнения лабораторной работы обучающиеся приобретут навык имитационного		
	моделирования СМО, расчета характеристик эффективности, анализа зависимости показателей		
	работы системы от её параметров.		

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы	
1	Работа с лекционным материалом.	
2	Работа с литературой.	
3	Текущая подготовка к занятиям.	
4	Подготовка к промежуточной аттестации.	
5	Подготовка к текущему контролю.	

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Горев, А. Э. Теория транспортных процессов и систем: учебник для среднего профессионального образования / А. Э. Горев. — 3-е изд., испр. и доп. — Москва: Издательство Юрайт, 2025. — 193 с. — (Профессиональное образование). — ISBN 978-5-534-13578-7.	URL: https://urait.ru/bcode/562014 (дата обращения: 07.11.2025).
2	Гужин, И. Н. Моделирование транспортных процессов: методические указания / И. Н. Гужин. — Самара: СамГАУ, 2024. — 26 с. — Текст: электронный // Лань: электронно-библиотечная система.	https://e.lanbook.com/book/421802 (дата обращения: 13.11.2025)
3	Ланских, Ю. В. Киберфизические системы: учебное пособие / Ю. В. Ланских, В. Г. Ланских. — Киров: ВятГУ, 2022. — 196 с. — Текст: электронный // Лань: электронно-библиотечная система	https://e.lanbook.com/book/408545 (дата обращения: 13.11.2025).
4	Кудрявцев, В. Б. Теория автоматов: учебник для вузов / В. Б. Кудрявцев, Э. Э. Гасанов, А. С. Подколзин. — 2-е изд. — Москва: Издательство Юрайт, 2025. — 199 с. — (Высшее образование). — ISBN 978-5-534-15339-2.	URL: https://urait.ru/bcode/569495 (дата обращения: 07.11.2025).

- 6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).
- Информационный портал Научная электронная библиотека eLIBRARY.RU (www.elibrary.ru);
- Единая коллекция цифровых образовательных ресурсов (http://window.edu.ru);
- Интернет-университет информационных технологий http://www.intuit.ru/;
 - Научно-техническая библиотека РУТ (МИИТ) (http://library.miit.ru).
 - Образовательная платформа «Юрайт» (https://urait.ru/).
- Электронно-библиотечная система издательства «Лань» (https://e.lanbook.com/).

- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).
 - Операционная система Windows;
 - Microsoft Office;
 - MS Teams;
 - Поисковые системы;
- 8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Аудитория для проведения занятий лекционного типа должна быть оснащена персональным компьютером и набором демонстрационного оборудования.

Аудитория для проведения практических занятий должна быть оснащена персональными компьютерами.

9. Форма промежуточной аттестации:

Зачет в 4, 5 семестрах.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

старший преподаватель кафедры «Цифровые технологии управления транспортными процессами»

И.С. Разживайкин

Согласовано:

Заведующий кафедрой УЭРиБТ А.Ф. Бородин

Заведующий кафедрой ЦТУТП В.Е. Нутович

Председатель учебно-методической

комиссии Н.А. Андриянова